tìm min B biết B=x^2+y^2 và 2x+4y=1
chu mi na
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm min, max (nếu có) của các biểu thức sau :
a) 25x^2 - 10x + 4
b) -x^2 +2x
c) x^2 - 2x + y^2 - 4y +6
Ta có : \(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x+5=t\)\(\Rightarrow A=\left(t-1\right)\left(t+1\right)=t^2-1\ge-1\)
Suy ra Min A = -1 \(\Leftrightarrow t=0\Leftrightarrow x^2+5x+5=0\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+\sqrt{5}}{2}\\x=\frac{-5-\sqrt{5}}{2}\end{cases}}\)
\(x^2+y^2\le2x+4y\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2\le5\)
Trong hệ tọa độ \(Oxy\)vẽ đường tròn \(\left(x-1\right)^2+\left(y-2\right)^2=5\)(C) và đường thẳng \(2x+y-F=0\)(d)
\(F=2x+y\)đạt GTNN hay GTLN khi (d) là tiếp tuyến của (C).
\(I\left(1,2\right)\)là tâm của (C), \(R=\sqrt{5}\)là bán kính của (C).
\(d\left(I,d\right)=\frac{\left|2.1+2-F\right|}{\sqrt{2^2+1^2}}=\frac{\left|F-4\right|}{\sqrt{5}}=\sqrt{5}\Leftrightarrow\orbr{\begin{cases}F=-1\\F=9\end{cases}}\).
Vậy \(minF=-1,maxF=9\).
từ 2x+4y=1 ta có \(x=\frac{1-4y}{2}\) suy ra \(x^2=\frac{1-8y+16y^2}{4}\)
=) \(B=\frac{20y^2-8y+1}{4}\)\(=\frac{100y^2-40y+4+1}{20}=\frac{\left(10y-2\right)^2+1}{20}\ge\frac{1}{20}\)
Dấu '=' xảy ra khi \(y=\frac{1}{5}\);\(x=\frac{1}{10}\)
mik chưa học đến min ,max ,