K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

Ta có :\(\frac{1}{3}+\frac{1}{6}+..+\frac{2}{x\left(x+1\right)}=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}\)

          = 2 x \(\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...\frac{1}{x\left(x+1\right)}\right)=2\times\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)\)

          = 2 x (\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)

          = 2 x (\(\frac{1}{2}-\frac{1}{x+1}\)

       Khi đó chỉ cần giải  2 x\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2005}{2007}\)

29 tháng 7 2015

147/50

 



 

12 tháng 5 2016

Đặt vế trái là A ta có:

\(\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)

\(\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)

\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow A=\frac{x-1}{x+1}\)

\(\Rightarrow\frac{x-1}{x+1}=\frac{2007}{2009}\Leftrightarrow x=2003\)
 

29 tháng 11 2022

\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow...