tìm x và y biết :2x= -8y
và x+y = -54
mong các bạn giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x + y + z = 49
\(\Rightarrow\frac{12x}{18}=\frac{12x}{16}=\frac{12x}{15}\Rightarrow\frac{x}{18}=\frac{x}{16}=\frac{x}{15}\)
áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{18}=\frac{x}{16}=\frac{x}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)
\(\Rightarrow\frac{x}{18}=1\rightarrow x=18\)
\(\frac{x}{16}=1\rightarrow x=16\)
\(\frac{x}{15}=1\rightarrow x=15\)
Ta có:\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)
Vậy\(\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)
Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{5z}{6}\) (=) \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\) và \(x+y+z=121\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{6}{5}}=\frac{121}{\frac{121}{30}}=30\)
+/ \(\frac{x}{\frac{3}{2}}=30\)=> \(x=45\)
+/ \(\frac{y}{\frac{4}{3}}=30\) => \(y=40\)
+/ \(\frac{z}{\frac{6}{5}}=30\)=> \(z=36\)
T_i_c_k mk nha mơn bạn nhiều ^^
x+6=xy-y
=>xy-y-x=6
=>x(y-1)-(y-1)=7
=>(x-1)(y-1)=7
x khác 1 <=> x-1 khác 0,chia 2 vế cho x-1
Đề bài <=> y = (x+6):(x-1) =1 +7/(x-1)
x,y nguyên <=> 7 chia hết cho (x-1) <=> (x-1)= cộng,trừ 1 HOẶC (x-1) = cộng,trừ 7
Giải x,tính y ta có 4 cặp nghiệm: (0;-6) , (2;8) , (8;2) , (-6;0)
do x,y thuộc N nên chọn (2;8) và (8;2)
mik ko biết đúng hay sai nha
x + 6 = y . ( x- 1)
x + 5 = y . x
mik suy ra x = 5 , y =2
a) x2 + 45 = y
Do x2 + 45 > 2 => y nguyên tố > 2 => y lẻ
=> x2 chẵn => x chẵn
Mà 2 là số nguyên tố chẵn duy nhất => x = 2
=> y = 22 + 45 = 49, ko là số nguyên tố, hình như là y2 mới đúng bn ạ
b) 2x = y + y + 1
=> 2x = 2y + 1
Do 2y + 1 là số lẻ => 2x lẻ => x = 0, không là số nguyên tố
Cả 2 câu sao đều vô lí z bn
Bài I: Từ \(\frac{x}{2}\)=\(\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{2}\).\(\frac{1}{4}\)=\(\frac{y}{3}\).\(\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{8}\)=\(\frac{y}{12}\)(1)
Từ \(\frac{y}{4}\)=\(\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{4}\).\(\frac{1}{3}\)=\(\frac{z}{5}\).\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{y}{12}\)=\(\frac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=2
Do đó:\(x=2.8=16\)
\(y=12.2=24\)
\(z=15.2=30\)
Vậy \(x=16\);\(y=24\);\(z=30\)
Bài II: Đặt \(k=\frac{x}{2}\)=\(\frac{y}{5}\)
\(\Rightarrow\)\(x=2.k\);\(y=5.k\)
Vì \(x.y=10\)nên \(2k.5k=10\)
\(\Rightarrow\)\(10.k^2=10\)
\(\Rightarrow\)\(k^2=1\)
\(\Rightarrow\)\(k=1\)hoặc\(k=-1\)
+) Với \(k=1\)thì \(x=2\);\(y=5\)
+) Với \(k=-1\)thì \(x=-2\);\(y=-5\)
Vậy \(x=2\);\(y=5\)hoặc \(x=-2\);\(y=-5\)
\(\frac{x}{2}=\frac{y}{5}\)và \(xy=10\)
Ta có :
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\). Thay vào biểu thức x . y = 10 . Ta được :
\(\frac{2y}{5}.y=10\Leftrightarrow\frac{2y^2}{5}=10\Leftrightarrow2y^2=50\Leftrightarrow y^2=25\Leftrightarrow y=5;y=-5\)
Với \(y=5\Rightarrow x=\frac{2.5}{5}=2\)
Với \(y=-5\Rightarrow x=\frac{2.\left(-5\right)}{5}=-2\)
a)x=+-4,+-7;+-2,+-14
b)(2x)^2-1=-21=>(2x)^2=-20=>2x=\(\sqrt{-20}\)=>x sẽ ko có giá trị vì ko có căn âm
c)2xy+x-6y-3-7=0
=2xy+x-6y-10=x+2(xy-3y-5)=0=>xy-3y-5=0
2x=-8y<=>x/y=-8/2<=>x/-8=y/2
áp dụng t/c dãy t/s=nhau:
\(\frac{x}{-8}=\frac{y}{2}=\frac{x+y}{\left(-8\right)+2}=\frac{-54}{-6}=9\)
=>x/-8=9=>x=-72
y/2=9=>y=18
vậy...
ms hok lớp 6 thui