K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABC có 

M là trung điểm của AB

P là trung điểm của AC

Do đó: MP là đường trung bình của ΔABC

Suy ra: MP//BN và MP=BN

hay BMPN là hình bình hành

13 tháng 12 2021

Ai đó giải giúp mik vs!!!

Xét tứ giác AICN có

M là trung điểm của AC

M là trung điểm của IN

Do đó: AICN là hình bình hành

mà \(\widehat{AIC}=90^0\)

nên AICN là hình chữ nhật

10 tháng 1 2022

Vì AM = CM và IM = NM ( N đối xứng với I qua M )

=> Tứ giác AICN là hbh

Mà AI\(\perp\) BC ( tam giác ABC là tam giác cân, AI là đường trung tuyến )

=> ACN là hcn

11 tháng 9 2017

a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )

b. D là điểm đối xứng với B qua M =>BM=MD

Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường 

=> ABCD là HBH

c. E đối xứng với A qua N => AN=NE

ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )

a: Xét ΔABC có 

D là trung điểm của BC

F là trung điểm của AC

Do đó: DF là đường trung bình của ΔABC

Suy ra: DF//AB

hay ABDF là hình thang

6 tháng 1 2022

a) Xét tứ giác AEBM:

+ D là trung điểm của AB (gt).

+ D là trung điểm của ME (M là điểm đối xứng với E qua D).

\(\Rightarrow\) Tứ giác AEBM là hình bình hành (dhnb).

\(\Rightarrow\) AM // BE; AM = BE (Tính chất hình bình hành).

Mà BE = EC (E là trung điểm của BC).

\(\Rightarrow\) AM = EC.

Xét tứ giác ACEM:

+ AM = EC (cmt).

+ AM // EC (AM // BE).

\(\Rightarrow\) Tứ giác ACEM là hình bình hành (dhnb).

b) Xét tam giác ABC cân tại A:

AE là đường trung tuyến (E là trung điểm của BC).

\(\Rightarrow\) AE là đường cao (Tính chất tam giác cân).

Xét hình bình hành AEBM: \(\widehat{AEB}=\) \(90^o\) (AE là đường cao).

\(\Rightarrow\) Tứ giác AEBM là hình chữ nhật (dhnb).

c) Tam giác AEB vuông tại E (\(\widehat{AEB}=\) \(90^o\)).

\(\Rightarrow\) \(S_{\Delta AEB}=\dfrac{1}{2}AE.BE=\dfrac{1}{2}AE.\dfrac{1}{2}BC\) (do (E là trung điểm của BC).

\(Thay:\) \(\dfrac{1}{2}.8.\dfrac{1}{2}.12=24\left(cm^2\right).\)

6 tháng 1 2022

a,

xét tam giác ABC có đường t/b DE:

=>DE//AC và DE=\(\dfrac{1}{2}\) AC

M là điểm đối xứng của DE:

=>DE+DM=AC

từ trên suy ra:

EM=AC và EM//AC

vậy ACEM là hình bình hành.

b, 

Xét tam giác ABC là tam giác cân :

=>AB=AC

mà AC = ME

nên: AB =ME (1)

lại có: AM=MB , MD=DE(2)

từ (1) và (2) suy ra:

AEBM là hình chữ nhật.

c,

Xét tam giác ABC có BE=EC suy ra:

BE=EC=\(\dfrac{1}{2}BC\)=\(\dfrac{12}{2}=6cm\)

vì AEBM là hình chữ nhật nên:

góc AEB = 90\(^o\)<=> AEB là tam giác vuông

vậy \(S_{AEB}=\dfrac{AE.BE}{2}=\dfrac{8.6}{2}=24cm^2\)

 

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Câu 1:

1. Vì $P,Q$ lần lượt là trung điểm của $AB,AC$ nên $PQ$ là đường trung bình của tam giác $ABC$ ứng với $BC$

$\Rightarrow PQ=\frac{1}{BC}=MC$ và $PQ\parallel BC$ hay $PQ\parallel MC$

Tứ giác $PQCM$ có cặp cạnh đối $PQ$ và $MC$ vừa song song vừa bằng nhau nên $PQCM$ là hình bình hành.

2.Vì tam giác $ABC$ cân tại $A$ nên đường trung tuyến $AM$ đồng thời là đường cao. Hay $AM\perp BC$

Tứ giác $NAMB$ có 2 đường chéo $MN, AB$ cắt nhau tại trung điểm $P$ của mỗi đường nên $NAMB$ là hình bình hành. 

Hình bình hành $NAMB$ có 1 góc vuông ($\widehat{AMB}$) nên $NAMB$ là hình vuông.

$\Rightarrow NB\perp BM$ hay $NB\perp BC$ (đpcm)

3.

Vì $PQCM$ là hình bình hành nên $PM\parallel QC; PM=QC$. Mà $P,M,N$ thẳng hàng; $PM=PN$ nên $PN\parallel QC$ và $PN=QC$

Tứ giác $PNQC$ có cặp cạnh đối $PN, QC$ song song và bằng nhau nên $PNQC$ là hình bình hành. 

Do đó $PC\parallel QN(1)$

Mà $PC\parallel QF$ (2)

Từ $(1);(2)\Rightarrow Q,N,F$ thẳng hàng (đpcm)

31 tháng 12 2020

Chị ơi  NB vuông góc với Bc nữa ạ

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

hay MN//BP và MN=BP

=>BMNP là hình bình hành

b: Xét tứ giác AKBH có 

M là trung điểm của HK

M là trung điểm của AB

Do đó: AKBH là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AKBH là hình chữ nhật

c: Xét ΔABC có 

M là trung điểm của AB

P là trung điểm của BC

Do đó: MP là đường trung bình

=>MP=AC/2(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2(2)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có MN//PH

nên MNPH là hình thang

mà MP=NH

nên MNPH là hình thang cân