K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: 

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔACB cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm 

a: Xét ΔABM và ΔDCM có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

DO đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM la đường cao

5 tháng 7 2017

A B C D M

a) Vì AB = AC (gt)

\(\Rightarrow\) \(\Delta ABC\) cân tại A

\(\Rightarrow\) AM là đường trung tuyến đồng thời là đường cao

Vậy AM \(\perp\) BC.

b) Xét hai tam giác ABM và DCM có:

MA = MD (gt)

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)

MB = MC (gt)

Vậy \(\Delta ABM=\Delta DCM\left(c-g-c\right)\)

Suy ra: \(\widehat{BAM}=\widehat{CDM}\) (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong

Do đó AB // DC (đpcm).

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có

M là trung điểm của AD
M là trung điểm của BC

Do đó:ABDC là hình bình hành

Suy ra: AB//CD

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM la đường cao

1 tháng 2 2022
 

Tham Khảo :

Bạn tự vẽ hình nha

a) Xét t/g ABM và t/g DCM có:

BM = CM (gt)

AMB = DMC ( đối đỉnh)

MA = MD (gt)

Do đó, t/g ABM = t/g DCM (c.g.c) (đpcm)

b) t/g ABM = t/g DCM (câu a)

=> ABM = DCM (2 góc tương ứng)

Mà ABM và DCM là 2 góc ở vj trí so le trong nên AB // DC (đpcm)

c) t/g AMC = t/g AMB (c.c.c)

=> AMC = AMB (2 góc tương ứng)

Mà AMC + AMB = 180o ( kề bù)

=> AMC = AMB = 90o

=> AM _|_ BC (đpcm)

d) AB // CD => BAD = ADC = 30o (so le trong)

Mà BAD = CAD do t/g AMB = t/g AMC (câu c)

=> BAD + CAD = 2.BAD = 2.30o = 60o

T/g ABC cân tại A, có BAC = 60o

=> t/g BAC đều

13 tháng 12 2016

hình vẽ(tự vẽ)

GIẢI

a)Xét tam giác ABM và tam giác ACM có:

AB=AC(gt)

AM là cạnh chung

BM=CM

=>tam giác ABM=ACM(c.c.c)

=>góc AMC=góc AMB mà góc AMC+góc AMB=180 độ(hai góc kề bù)

=>AM vuông góc với BC

b)Xét tam giác AMB và tam giác DMC có:

AM=DM(gt)

Góc AMB=góc CMD(đối đỉnh)

BM=CM(gt)

=>tam giác AMB=tam giác DMC(c.g.c)

=> góc ABM=góc DCM mà góc ABM và góc DCM là hai góc so le trong

=> AB//DC

c)điều kiện tam giác ABC để góc ADC=30 độ là tam giác ABC là tam giác đều

điều kiện tam giác ABC để BD vuông góc với CD là tam giác ABC vuông cân tại A

 

19 tháng 12 2016

cho đề sai thế ai mà làm được chứ ?lolang

26 tháng 2 2020

A B C D M O E (Hình ảnh chỉ mang tính chất minh họa )

a)

+) Xét \(\Delta\)ABM và \(\Delta\)DCM có :

AM = DM (gt)

góc AMB = góc DMC ( đối đỉnh )

BM = CM (gt)

=> \(\Delta\)ABM = \(\Delta\)DCM ( c.g.c )

=> AB = DC ( hai canh tương ứng )

+) Do \(\Delta\)ABM = \(\Delta\)DCM (cmt)

=> góc ABM = góc DCM ( hai góc tương ứng )

Mà hai góc này ở vị trí sole trong

=> AB // DC

b) Ta có : AB // CD (cmt)

 AB \(\perp\) AC (gt)

=> DC \(\perp\)AC

Xét \(\Delta\)ABC và \(\Delta\)CDA có :

AB = CD (cmt)

góc BAC = góc DCA ( = 90 độ )

AC chung

=> \(\Delta\)ABC = \(\Delta\)CDA ( c.g.c )

=> BC = DA ( hai cạnh tương ứng )

Mà : \(\frac{DA}{2}=MD=MA\Rightarrow MA=\frac{1}{2}BC\) (đpcm)

c) Xét \(\Delta\)BAE và \(\Delta\)BAC có :

AB chung

góc BAE = góc BAC ( = 90 độ )

AE = AC (gt)

=> \(\Delta\)BAE = \(\Delta\)BAC ( c.g.c )

=> BE = BC và góc BEA = góc  BCA ( hai góc tương ứng )  (1)

Ta chứng minh được ở phần b) có : AM = \(\frac{1}{2}BC=MC\)

=> \(\Delta\)AMC cân tại M

=> góc MAC = góc MCA 

hay góc MAC = góc BCA (2)

Từ (1) và (2) => góc MAC = góc BEC

Mà hai góc này ở vị trí đồng vị

=> AM // BE (đpcm)

d) Câu này mình không hiểu đề lắm !!

Mình nghĩ là : \(\Delta\)ABC cần thêm điều kiện góc B = 30 độ thì sẽ có điều trên.

e) Ta có : BE // AM

=> BE // AD

=> góc EBO = góc DAO

Xét \(\Delta\)EBO và \(\Delta\)DAO có :

BE = AD ( = BC )

góc EBO = góc DAO (cmt)

OB = OA (gt)

=> \(\Delta\)EBO = \(\Delta\)DAO ( c.g.c )

=> góc EOB = góc DOA ( hai góc tương ứng )

Mà : góc EOB + góc EOA = 180 độ

=> góc DOA + góc EOA = 180 độ

hay : góc EOD = 180 độ

=> Ba điểm E, O, D thẳng hàng (đpcm)

26 tháng 2 2020

Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath