Bài 15: Cho ABC có ba góc đều nhọn, AB < AC. Lấy E là trung điểm của BC. Trên tia AE lấy điểm D sao cho E là trung điểm của AD.
a) Chứng minh rằng: ∆ABE = ∆DCE.
b) Chứng minh: AC // BD.
c) Vẽ AH ⏊ BC (H thuộc BC). Trên tia AH lấy điểm K sao cho H là trung điểm của
AK. Chứng minh rằng BD = AC = CK.
d) Chứng minh: DK ⏊ AH
a) Xét ∆ABE và ∆DCE có:
+ ^AEB = ^DEC (2 góc đối đỉnh).
+ EB = EC (do E là trung điểm của BC).
+ EA = ED (do E là trung điểm của AD).
=> ∆ABE = ∆DCE (c - g - c).
b) Xét tứ giác ACDB có:
+ E là trung điểm của BC (gt).
+ E là trung điểm của AD (gt).
=> Tứ giác ACDB là hình bình hành (dhnb).
=> AC // BD (Tính chất hình bình hành).
c) Vì tứ giác ACDB là hình bình hành (cmt).
=> AC = BD (Tính chất hình bình hành). (1)
Xét tam giác ACK có:
+ CH là đường cao (do CH ⏊ AK).
+ CH là đường trung tuyến (do H là trung điểm của AK).
=> Tam giác ACK cân tại C.
=> AC = CK (Tính chất tam giác cân). (2)
Từ (1) và (2) => BD = AC = CK (đpcm).
d) Xét tam giác AKD có:
+ H là trung điểm của AK (gt).
+ E là trung điểm của AD (gt)
=> HE là đường trung bình.
=> HE // DK (Tính chất đường trung bình trong tam giác).
Mà HE ⏊ AH (do BC ⏊ AH).
=> DK ⏊ AH (Từ ⏊ đến //).