K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 12 2022

19

Từ pt đầu ta có:

\(x^2-xy-2xy+2y^2=0\)

\(\Leftrightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x=2y\end{matrix}\right.\)

TH1: \(x=y\) thế xuống pt dưới:

\(y^2-y-y^2=1\Rightarrow y=-1\Rightarrow x=-1\)

TH2: \(x=2y\) thế xuống pt dưới:

\(\left(2y\right)^2-2y-y^2=1\Leftrightarrow3y^2-2y-1=0\)

\(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=2\\y=-\dfrac{1}{3}\Rightarrow x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy nghiệm của hệ là: \(\left(x;y\right)=\left(-1;-1\right);\left(1;2\right);\left(-\dfrac{1}{3};-\dfrac{2}{3}\right)\)

NV
23 tháng 12 2022

21.

Từ pt đầu:

\(xy+2=2x+y\Leftrightarrow xy-y+2-2x=0\)

\(\Leftrightarrow y\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

TH1: \(x=1\) thế xuống pt dưới:

\(2y+y^2+3y=6\Leftrightarrow y^2+5y-6=0\)

\(\Rightarrow\left[{}\begin{matrix}y=1\\y=-6\end{matrix}\right.\)

TH2: \(y=2\) thế xuông pt dưới

\(4x+4+6=6\Rightarrow x=-1\)

Vậy nghiệm của pt là: \(\left(x;y\right)=\left(1;1\right);\left(1;-6\right);\left(-1;2\right)\)

17 tháng 9 2021

b)\(3x\left(x+3y\right)-6xy\left(x+3y\right)\)

\(=\left(3x-6xy\right)\left(x+3y\right)\)

c)\(x\left(x+y\right)-5x-5y\)

\(=x\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x-5\right)\left(x+y\right)\)

17 tháng 9 2021

Bài 1: 

b. \(3x\left(x+3y\right)-6xy\left(x+3y\right)\)

= (3x - 6xy)(x + 3y)

= 3x(1 - 2y)(x + 3y)

c. \(x\left(x+y\right)-5x-5y\)

= x(x + y) - 5(x + y)

= (x - 5)(x + y)

d. \(3\left(x-y\right)-5x\left(y-x\right)\)

= 3(x - y) + 5x(x - y)

= (3 + 5x)(x - y)

Bài 3:

a. x + 6x2 = 0

<=> x(1 + 6x) = 0

<=> \(\left[{}\begin{matrix}x=0\\1+6x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{6}\end{matrix}\right.\)

b. 2(x + 3) - x(x + 3) = 0

<=> (2 - x)(x + 3) = 0

<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

c. 5x(x - 2) - (2 - x) = 0

<=> 5x(x - 2) + (x - 2) = 0

<=> (5x + 1)(x - 2) = 0

<=> \(\left[{}\begin{matrix}5x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{5}\\x=2\end{matrix}\right.\)

d. (x + 1) = (x + 1)2

<=> (x + 1) - (x + 1)2 = 0

<=> (1 - x - 1)(x + 1) = 0

<=> -x(x + 1) = 0

<=> \(\left[{}\begin{matrix}-x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

 

26 tháng 5 2021

1 C

2 A

3 C

4 B

5 D