K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

\(x^2-y^2+2x-4y-10=0\\ \Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\\ \Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

Đề có sao k

3 tháng 1 2018

=0 chứ

14 tháng 2 2017

\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=13\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=13\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=13\)

Tới đây thì đơn giản rồi nhé

14 tháng 2 2017

pt <=> \(\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=7\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=7\)

Mặt khác x,y>0 => x+y+3>x-y-1 và x+y+3>0

Nên ta có cặp nghiệm duy nhất sau: \(\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}x+y=4\\x-y=2\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}x=3\\y=1\end{cases}}\)

16 tháng 2 2019

\(x^2-y^2+2x-4y-10=0\)\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)\(\Leftrightarrow\left[\left(x+1\right)-\left(y+2\right)\right]\left[\left(x+1\right)+\left(y+2\right)\right]=7\)\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7.\)

Mà x, y nguyên dương nên x - y - 1 và x + y + 3 nguyên => x - y - 1 và x + y + 3 là ước nguyên của 7. Do đó ta có bảng sau:

x - y - 11-17-7
x + y + 37-71-1
x - y208-6
x + y4-10-2-4
x3-53-5
y1-5-51
Kết luậnthoả mãnx, y < 0 (loại)y < 0 (loại)x < 0 (loại)

Vậy với x = 3, y = 1 thì thoả mãn \(x^2-y^2+2x-4y-10=0.\)

2 tháng 4 2017

Ta có:

\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Vì \(x,y\) nguyên dương 

Nên \(x+y+3>x-y-1>0\)

\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)

Vậy phương trình có nghiệm nguyên dương duy nhất \(\left(x,y\right)=\left(3;1\right)\)

8 tháng 6 2017

=>xy(1-1+2-4)=10

=>xy(-2)=10

=>xy=-5

tự tìm

8 tháng 6 2017

=> xy( 1-1+2-1) = 10

=> xy(-2) = 10

=> xy = -5

Còn nữa

7 tháng 3 2017

CHO TEN ROI NOI

7 tháng 3 2017

ngọc anh ạ

14 tháng 8 2018

Bài 1 :

Câu a : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)

Câu b : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Vậy \(GTNN\) của \(A\)\(\dfrac{11}{4}\) . Dấu \("="\) xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)

14 tháng 8 2018

Bài 2 :

Câu a : \(x^2-6x+y^2-4y+13=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y-2\right)^2=0\)

Do : \(\left(x-3\right)^2\ge0\) and \(\left(y-2\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy \(x=3\) and \(y=2\)

Câu b : \(4x^2-4x+y^2+6y+10=0\)

\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(y+3\right)^2=0\)

Because the : \(\left(2x-1\right)^2\ge0\) and \(\left(y+3\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{2}\)\(y=-3\)