K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

\(2b.\)  

Với mọi  \(m;n\in Z\), ta có:

\(mn\left(m^4-n^4\right)=mn\left[\left(m^4-1\right)-\left(n^4-1\right)\right]=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)

\(\text{*)}\) Xét  \(mn\left(m^4-1\right)=mn\left(m^2-1\right)\left(m^2+1\right)\)

                                         \(=mn\left(m^2-1\right)\left[\left(m^2-4\right)+5\right]\)

                                         \(=mn\left(m^2-1\right)\left(m^2-4\right)+5mn\left(m^2-1\right)\)

             \(mn\left(m^4-1\right)=mn\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)+5mn\left(m-1\right)\left(m+1\right)\)

Vì  \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  là tích của  \(5\)  số nguyên liên tiếp nên \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  chia hết cho  \(2;3\)  và  \(5\) 

Mà \(\left(2;3;5\right)=1\)  

Do đó,  \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  chia hết cho  \(2.3.5=30\)  \(\left(1\right)\)

Mặt khác,  \(m\left(m-1\right)\left(m+1\right)\)  chia hết cho  \(6\)  (tích của  \(3\)  số nguyên liên tiếp)

         nên  \(5mn\left(m-1\right)\left(m+1\right)\)  chia hết cho  \(30\)  \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\) , suy ra  \(mn\left(m^4-1\right)\)  chia hết cho  \(30\)  \(\left(\text{*}\right)\)

Tương tự, ta cũng chứng minh \(mn\left(n^4-1\right)\)  chia hết cho cho  \(30\)  \(\left(\text{**}\right)\)

Từ  \(\left(\text{*}\right)\)  và  \(\left(\text{**}\right)\)  suy ra  \(mn\left(m^4-n^4\right)\)  chia hết cho  \(30\)  với mọi  \(m;n\in Z\)

 

14 tháng 2 2016

Đề câu  \(a.\)  sai rồi nha bạn! 

Ví dụ, với  \(n=2\)  thì  \(3^{2.2+1}+2^{2.2+2}=3^5+2^6=307\)  không chia hết cho  \(7\)  (vô lí)

Hiển nhiên, với công thức tổng quát  \(3^{2n+1}+2^{2n+2}\)  sẽ không chia hết cho  \(7\)  với \(n=2\)

                                                   \(-------------\)

\(a.\)  \(3^{2n+1}+2^{n+2}=3^{2n}.3+2^n.2^2\)  

                                   \(=9^n.3+2^n.4\)

                                   \(=9^n.3-2^n.3+2^n.3+2^n.4\)

                                  \(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)

                                  \(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)

                                  \(=3\left(9-2\right)\left(9^{n-1}+9^{n-2}.2+9^{n-3}.2^2+...+2^{n-1}\right)+7.2^n\)

     \(3^{2n+1}+2^{n+2}=3.7M+7.2^n\) 

Vì  \(3.7M\) chia hết cho  \(7\)  và  \(7.2^n\)  chia hết cho  \(7\)  nên  \(3.7M+7.2^n\)  chia hết cho  \(7\)

Vậy,  \(3^{2n+1}+2^{n+2}\)  chia hết cho  \(7\)

 

14 tháng 2 2016

\(2.\)  Tính chất: Trong  \(n\)  số nguyên liên tiếp có một  và chỉ một số chia hết cho  \(n\)

Giả sử \(n,\)  \(n+1,...,\)  \(n+1899\)  là dãy \(1900\) số tự nhiên liên tiếp \(\left(1\right)\)

Xét  \(1000\) số tự nhiên liên tiếp từ  \(n,\)  \(n+1,...,\)  \(n+999\)  \(\left(2\right)\)  thuộc dãy số  \(\left(1\right)\)

Theo tính chất trên, sẽ có một số chia hết cho  \(1000\)

Giả sử số đó là  \(n_0\), khi đó \(n_0\) có tận cùng là  \(3\) chữ số \(0\) và  \(m\)  là tổng các chữ số của \(n_0\)

Khi đó, ta xét  \(27\)  số tự nhiên gồm:

\(n_0,\)  \(n_0+9,\)  \(n_0+19,\)  \(n_0+29,\)  \(n_0+39,...,\)  \(n_0+99,\)  \(n_0+199,...,\)  \(n_0+899\)  \(\left(3\right)\)

Sẽ có tổng các chữ số gồm  \(27\)  số tự nhiên liên tiếp là  \(m,\)  \(m+1,\)  \(m+2,...,\)  \(m+26\)

Do đó,  có  \(1\)  số chia hết cho  \(27\)

Vậy,  trong  \(1900\)  số tự nhiên liên tiếp có  \(1\)  số có tổng các chữ số chia hết cho \(27\)

 

21 tháng 7 2015

1) Số cần tìm là: 3

2)  2354 X 9 = 21186

3) ( "b" ở đâu ra vậy bạn ? )

4) Đăt S = 3^(n+2) - 2^(n+2) + 3^n - 2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n] 
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10) 
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 
=> S chia hết cho 10.

23 tháng 11 2016

xl mink gần ra oy 

3 tháng 2 2019

Toi quen mat cach  lam roi xin loi nhe