K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

\(a.\)  Từ  \(x-2y=1\)  \(\Rightarrow\)  \(x=1+2y\)  \(\left(\text{*}\right)\)

Thay  \(x=1+2y\)  vào \(A\), khi đó, biểu thức \(A\)  trở thành

\(A=\left(1+2y\right)^2+y^2+4=1+4y+4y^2+y^2+4=5y^2+4y+5\)

\(A=5\left(y^2+\frac{4}{5}y+1\right)=5\left(y^2+2.\frac{2}{5}.y+\frac{4}{25}+\frac{21}{25}\right)=5\left(y+\frac{2}{5}\right)^2+\frac{21}{5}\ge\frac{21}{5}\)  với mọi  \(y\)

Dấu  \(''=''\)   xảy ra  \(\Leftrightarrow\)  \(\left(y+\frac{2}{5}\right)^2=0\)  \(\Leftrightarrow\)  \(y+\frac{2}{5}=0\)  \(\Leftrightarrow\)  \(y=-\frac{2}{5}\)

Thay  \(y=-\frac{2}{5}\)  vào \(\left(\text{*}\right)\), ta được \(x=\frac{1}{5}\)

Vậy,  \(A\)  đạt giá trị nhỏ nhất là  \(A_{min}=\frac{21}{5}\)  khi và chỉ khi   \(x=\frac{1}{5}\)  và  \(y=-\frac{2}{5}\)

\(b.\)  Gọi  \(Q\left(x\right)\)  là thương của phép chia và dư là \(r=ax+b\)  (vì dư trong phép chia cho  \(x^2-1\)  có bậc cao nhất là bậc nhất), với mọi  \(x\)  ta có:

\(x^{2008}-x^3+5=\left(x^2-1\right).Q\left(x\right)+ax+b\)   \(\left(\text{**}\right)\)

Với  \(x=1\)  thì  phương trình \(\left(\text{**}\right)\)  trở thành  \(5=a+b\)  \(\left(1\right)\)

Với  \(x=-1\)  thì phương trình  \(\left(\text{**}\right)\)  trở thành \(7=-a+b\)  \(\left(2\right)\)

Giải hệ phương trình  \(\left(1\right)\)  và  \(\left(2\right)\), ta được \(a=-1\)  và  \(b=6\)

Vậy, dư trong phép chia đa thức  \(x^{2008}-x^3+5\)  cho đa thức \(x^2-1\)  là  \(-x+6\)

 

a: P(1)=2+1-1=2

P(1/4)=2*1/16+1/4-1=-5/8

b: P(1)=1^2-3*1+2=0

=>x=1 là nghiệm của P(x)

P(2)=2^2-3*2+2=0

=>x=2 là nghiệm của P(x)

17 tháng 4 2016

a2+b2=a3+b3=1 

suy ra a = 1 hoặc b = 1

suy ra a4+b4cũng =1

17 tháng 4 2016

bạn sai rồi kìa: nếu a=1;b=1 thì a2+b2=a3+b3 <=> 1+1=1+1=2.mà đề ra là bằng 1 mà..bạn xem lại thử nhé

23 tháng 4 2017

ta có : x=2010

->x-1=2009

A(x)=x2010-(x-1).x2009 -(x-1).x2008 -...-(x-1).x+1

A(x)=x2010-x2010+x2009-x2009+x2008-...-x2+x+1

A(x)=x+1=2010+1=2011

24 tháng 4 2017

Cảm ơn