Cho n là số tự nhiên, chứng minh rằng:
a)(n+10).(n+15) chia hết cho 2
b)n.(n+1).(n+2) chia hết cho 6
c)n.(n+1).(2n+1) chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(n+10\right)\left(n+15\right)\)
Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)
Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)
Suy ra đpcm
\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)
Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)
Suy ra đpcm
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
a. Xét n chẵn
=> n + 10 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Xét n lẻ
=> n + 15 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Vậy (n + 10) (n + 15) chia hết cho 2 với mọi n
b. n (n + 1) (n + 2)
=> n + n + 1 + n + 2
=> 3n + 3
Ta có : 3n chia hết cho 3 ; 3 chia hết cho 3
=> 3n + 3 chia hết cho 3
Ta có n (n + 1) là tích hai số liên tiếp chia hết cho 2
Ta có n (n + 2) tích hai số liên tiếp chia hết cho 2
Và n (n + 2) = n.n + n.2 = 2n . n2 có cơ số 2 nên chia hết cho 2.
c. n (n + 1) (2n + 1) = n (n + 1) (n + 2 + n - 1) = n (n + 1) (n + 2) (n - 1) (n + 1) n
Các số trên là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và chia hết cho 2
Mình chỉ biết làm ý a thôi, ý bc chắc cũng tương tự,
bài cho n là số tự nhiên vậy n có thể là số chẵn hoặc là số lẻ,
a, trong biểu thức (n+10)(n+15) ta xét hai trường hợp
+)trường hợp 1: n lẻ, ta có: (n+10) sẽ là số lẻ; (n+15) sẽ là số chẵn. (n+10)(n+15) là tích của một số lẻ với một số chẵn , vậy kết quả sẽ là số chẵn và chia hết cho 2
+)trường hợp 2: n chẵn, ta có: (n+10) sẽ là số chẵn;(n+15) sẽ là số lẻ. (n+10)(n+15) là tích của một số chẵn và một số lẻ, vậy kết quả sẽ là số chẵn và chia hết cho 2
a) Ta có n là số tự nhiên nên n chẵn hoặc n lẻ
nếu n chẵn thì n +10 chẵn nên n+ 10 chia hết cho 2. Do đó (n+10)(n+15) chia hết cho 2
nếu n lẻ thì n + 15 chẵn nên n+15 chia hết cho 2. Do đó (n+10)(n+15) chia hết cho 2
Vậy (n+10)(n+15) chia hết cho 2
b) c) tương tự
a) Nếu \(n\)chẵn thì \(n+10\)chẵn nên \(\left(n+10\right)\left(n+15\right)⋮2\).
Nếu \(n\)lẻ thì \(n+15\)chẵn nên \(\left(n+10\right)\left(n+15\right)⋮2\).
b) \(n\left(n+1\right)\left(n+2\right)\)là tích của ba số tự nhiên liên tiếp nên trong 3 số \(n,n+1,n+2\)chắc chắn có ít nhất 1 số chia hết cho \(2\), 1 số chia hết cho \(3\)do đó ta có đpcm.
c) \(n\left(2n+7\right)\left(7n+1\right)=6n.n\left(2n+7\right)+n\left(2n+7\right)\left(n+1\right)\)
\(=6n.n\left(2n+7\right)+2n\left(n+1\right)\left(n+2\right)+3n\left(n+1\right)\)
Ta có: \(6n.n\left(2n+7\right)⋮6,2n\left(n+1\right)\left(n+2\right)⋮6,3n\left(n+1\right)⋮6\)
do đó ta có đpcm.