K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )

=> ΔABC vuông tại A

a. Vì Am là trung tuyến của BC

=> AM =1/2 BC

=> AM = 5cm.

b. Xét tứ giác ADME, ta có:

góc DAE + góc AEM + góc EMD + góc MDA = 360°

=> 90° + 90° + góc EMD + 90° = 360°

=> góc EMD = 90°

=> Tứ giác ADME là hình chữ nhật.

29 tháng 12 2018

Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.

15 tháng 12 2014

Xin lỗi vì mình không biết cách để đưa hình lên đây nhưng bạn có thể tự vẽ mà!!

a) Vì tam giác ABC vuông nên đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên 

AM=\(\frac{BC}{2}=\frac{10}{2}=5\)

b) Tứ giác ADME là hình chữ nhật hay có 4 góc bằng nhau và bằng 90 độ

c) Giả sử AEMD là hình vuông

=> AE=AD

=>AC=AB

Vậy để AEMD là hình vuông thì tam giác ABC vuông cân

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

6 tháng 1 2022

Đây là toán mà bạn ơi

nhầm môn học rùi XD

29 tháng 12 2018

Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.

26 tháng 9 2016

a, AM=5

b,  ADME là hình chũ nhật

c, DECB là hình thang cân

26 tháng 9 2016

bn giải cụ thể ra đc k ạ

25 tháng 7 2017

Cô gọi ý nhé. Vì bài này cơ bản.

a) Xét tứ giác ADME và thấy nó có 3 góc vuông. Vậy ADME là hình chữ nhật.

b) Do ADME là hình chữ nhật nên DE = AM.

Do tam giác ABC vuông tại A nên \(AM=MB=MC=\frac{BC}{2}\)

Áp dụng Pitago ta tìm được BC = 10 cm nên AM = 5 cm.

Vậy DE = 5cm.

29 tháng 12 2018

Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.