Qusetion 1
If a is a natural number divisible by 7 and a<90 then the greatest possible value of a is .....................
Question 2
b0b04 +40b0b+b040b=10101*11*2 b=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm 1 số tự nhiên sao cho khi chia số đó cho 9 thì được thương là 7 và có số dư lớn nhất.
Giải:
Vì số chia là 9 nên số dư lớn nhất là: 8
Số đó là: 9x7+8 = 71
Đáp số : 71
Câu 1: Cho chia hết cho 9. giá trị là gì?
Câu 2: Có bao nhiêu phần tử của tập A chia hết cho 9?
Câu 3: A là một tập hợp các bội số của 12 ít hơn 12. Làm thế nào nhiều yếu tố không tập A có?
Câu 4: Tìm dư khi chia cho 3. Câu 5: Cho rằng 511 là tổng của hai số nguyên tố và,. giá trị là gì?
Câu 6: Cho rằng. Tìm giá trị của.
Câu 7: Cho rằng. không số A có bao nhiêu ước?
Câu 8: Tìm số tự nhiên vì thế sản phẩm và 5 là số nguyên tố.
Câu 9: Cho rằng. không số A có bao nhiêu ước?
Câu 10: Cho rằng. Một số có bao nhiêu ước?
Câu 1: Given that is divisible by 9. What is the value of ?
Câu 2: How many elements of the set A are divisible by 9?
Câu 3:A is a set of multiples of 12 less than 12. How many elements does the set A have?
Câu 4:Find the remainder when is divided by 3.
Câu 5:Given that 511 is the sum of two prime numbers and , . What is the value of ?
Câu 6:Given that . Find the value of .
Câu 7:Given that . How many divisors does the number A have?
Câu 8:Find the natural number so that the product of and 5 is a prime number.
Câu 9:
Given that . How many divisors does the number A have?
Câu 10:
Given that . How many divisors the number A have?
Exer 1:
Solution:
Suppose that, the unknown number is: \(\overline{x215}\) (where x \(\in\) N).
When we clean three digits then the smaller number is \(\overline{x}\).
We have: \(\overline{x215}\) + \(\overline{x}\) = 78293
\(\Rightarrow\) 1000. \(\overline{x}\) + 215 + \(\overline{x}\) = 78293
1001. \(\overline{x}\) = 78078
x = 78
Thus, we found two natural number: 78215 and 78.
Exer 2:
Solution:
We have: x + 2y \(⋮\) 5
\(\Rightarrow\) 2x + 4y \(⋮\) 5
(2x + 4y) + (3x - 4y) = 5x \(⋮\) 5
\(\Rightarrow\) 2x + 4y \(⋮\) 5
Deduce 3x - 4y \(⋮\) 5.
Exer 3:
Solution:
We have: 2x + 5y \(⋮\) 7
4x + 10y \(⋮\) 7
(4x + 10y) - (4x + 3y) = 7y \(⋮\) 7
\(\Rightarrow\) 4x + 10y \(⋮\) 7
Deduce 4x + 3y \(⋮\) 7.
Call the smallest digit a => 3-digit number a, 2a, 3a with 3a ≤ 9 => a ≤ 3. Find the number divisible by 18, which is divisible by 9, so (a + 2a + 3a) = 6a is divisible by 9 => a is divisible by 3, so a = 3 => 3 digits are 3, 6, 9
The number to find is even by dividing by 2, so the last digit is 6
=> 396 or 936
Call the smallest digit a => 3-digit number a, 2a, 3a with 3a ≤ 9 => a ≤ 3. Find the number divisible by 18, which is divisible by 9, so (a + 2a + 3a) = 6a is divisible by 9 => a is divisible by 3, so a = 3 => 3 digits are 3, 6, 9
The number to find is even by dividing by 2, so the last digit is 6
=> 396 or 936
bai toan này @gmail.com
đúng vận=y