Trên mặt phẳng tọa độ Oxy cho đường thẳng (d):\(\left(y\right)=\left(2m-3\right)x+4m-3\). Gọi H là khoảng cách từ điểm O đến đường thẳng (d). Tìm giá trị lớn nhất của h.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau1: gọi H là chân đường cao kẻ từ O đến đt (d) .\(\Rightarrow OH=2\)
giao điểm (d) và Oy la A(0,4) va giao diem (d) voi Ox la B(\(\dfrac{4}{1-m}\),0)
ta có \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)
\(\Leftrightarrow\dfrac{1}{4}=\dfrac{1}{16}+\dfrac{\left(1-m\right)^2}{16}=\dfrac{1+\left(1-m\right)^2}{16}\)
\(\Rightarrow\left[{}\begin{matrix}1-m=\sqrt{3}\\1-m=-\sqrt{3}\end{matrix}\right.\Rightarrow m=1+\sqrt{3}\left(m>0\right)\)
cau2: goi \(\Delta\)là đường thẳng đi qua B(-5 ;20) vã C(7;-16) Pt \(\Delta\): y= ax+b
tọa độ B,C thõa mãn pt \(\Delta\)\(\left\{{}\begin{matrix}20=-5a+b\\-16=7a+b\end{matrix}\right.\Rightarrow a=-3;b=5\)
\(\Rightarrow\)y= -3x +5 (\(\Delta\)).để 3 điểm A ,B ,C thẳng hàng thi toa do A(\(\sqrt{x-1},-37\)).thoa pt\(\Delta\)
-37= -3\(\sqrt{x-1}+5\)\(\Leftrightarrow\sqrt{x-1}=14\)
\(\Rightarrow x=197\)
2mx -4m +10x -1 -y =0
2m(x-2) +(10x -1-y) =0
x =2 ; y =19 pt đúng với mọi m
=> h/s luôn qua điểm M(2;19) gọi K/c từ A đến d là AH
khoảng cách lờn nhất AH= AM ( AH </ AM)
khi đó AH vuông góc AM
+ gọi pt qua AM là y =ax +b => a =4 ; b =11
=>(2m+10) . 4 =-1
2m = -1/4 -10 =- 41/4
m =-41/8
\(A=139\)
\(\Leftrightarrow720:\left(x-6\right)=40\)
\(\Leftrightarrow x-6=18\)
hay x=24
b) Xét tam giác OMB vuông tại O có:
BM2 = OM2 + OB2 = 1 + 1 = 2 ⇒ BM = √2
Tương tự tam giác OAB vuông tại O có:
B A 2 = O A 2 + O B 2 = 1 + 1 = 2 ⇒ BA = 2
Xét tam giác MAB có:
B M 2 + B A 2 = 2 + 2 = 4 = A M 2
⇒ ΔMAB vuông tại B
Do đó, khoảng cách từ M đến đường thẳng (d) là độ dài đoạn BM = 2
Gọi \(M\left(2+2t;3+t\right)\)
M có tọa độ nguyên \(\Leftrightarrow t\) nguyên
\(\overrightarrow{AM}=\left(2+2t;2+t\right)\) \(\Rightarrow AM=\sqrt{\left(2+2t\right)^2+\left(2+t\right)^2}=5\)
\(\Leftrightarrow5t^2+12t-17=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{17}{5}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow M\left(4;4\right)\)
PT giao Ox: \(x=\dfrac{3-4m}{2m-3}\Leftrightarrow A\left(\dfrac{3-4m}{2m-3};0\right)\Leftrightarrow OA=\left|\dfrac{3-4m}{2m-3}\right|\)
PT giao Oy: \(y=4m-3\Leftrightarrow B\left(0;4m-3\right)\Leftrightarrow OB=\left|4m-3\right|\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(2m-3\right)^2}{\left(4m-3\right)^2}+\dfrac{1}{\left(4m-3\right)^2}\)
\(\Leftrightarrow\dfrac{1}{OH^2}=\dfrac{4m^2-12m+10}{\left(4m-3\right)^2}\\ \Leftrightarrow OH^2=\dfrac{16m^2-24m+9}{4m^2-12m+10}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow4m^2t-12mt+10t=16m^2-24m+9\\ \Leftrightarrow m^2\left(4t-16\right)-m\left(12t-24\right)+10t-9=0\)
Coi đây là PT bậc 2 ẩn m, PT có nghiệm
\(\Leftrightarrow\Delta=\left(12t-24\right)^2-4\left(10t-9\right)\left(4t-16\right)\ge0\\ \Leftrightarrow144t^2-576t+576-160x^2+784x-576\ge0\\ \Leftrightarrow-t^2+13t\ge0\\ \Leftrightarrow0\le t\le13\\ \Leftrightarrow OH\le\sqrt{13}\)
Dấu \("="\Leftrightarrow\) PT có nghiệm kép hay \(m=\dfrac{12t-24}{8t-32}=\dfrac{3t-6}{2t-8}=\dfrac{39-6}{26-8}=\dfrac{33}{18}\)