chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)thì
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) => đpcm
Đặt a/b=b/c=k
Suy ra a=bk , c=dk
Suy ra 5a + 3b/ 5a - 3b= 5bk + 3b / 5bk - 3b = b(5k + 3) / b(5k - 3 ) = 5k + 3 / 5k - 3 (1)
5c + 3d / 5c - 3d = 5dk + 3d / 5dk - 5d = d(5k + 3) / d(5k - 3 ) = 5k + 3 / 5k - 3 (2)
Từ (1) và (2) suy ra (đpcm)
con mẹ thằng ngu thấy bố mày chưa
Đây là bài giải của bạn Trần Như cách đây lâu rồi. Mình ghi lại vì không cop được link.
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
Từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)áp dụng tính chất của tỉ lệ thức ta được:
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{5a+3b}{5a-3b}=\frac{5x+3d}{5c-3d}\)
Vậy \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Ta có:\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
\(\Rightarrow\)\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(đpcm)
mk giải bài này nhé:
từ a/b = c/d => a/c = b/d => 5a/5c = 3b/3d
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\) áp dụng tính chất của tỉ lệ thức ta được:
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (đpcm)
Bài 1
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có:
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)
Vậy .....
Bài 2
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)
Vậy .....
Chúc bạn học tốt!
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
=> \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
=> Đpcm
Ta có ; \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3b}=\frac{5a-3b}{5c-3b}\)
Nên : \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
Vậy \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-4d}\left(đpcm\right)\)
đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk\) và \(c=dk\)
thay vào biểu thức
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\) (1)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\) (2)
Từ 1 và 2 suy ra đpcm
câu b tương tự bạn thay a=bk và c=dk rồi rút gọn như câu a là xong nha!
Ta có: a/b=c/d
Suy ra: 5a/3b = 5c/3d = 5a + 3b/5c + 3d = 5a - 3b/5c - 3d = 5a + 3b/5a - 3b = 5c + 3d/5c - 3d (áp dụng tính chất dãy các tỉ số bằng nhau)(đpcm)