Cho tam giác ABC cân tại A. Vẽ AH vuông góc với BC
a) Chứng minh: ΔAHB = ΔAHC
b) Vẽ HM vuông góc với AB, HN vuông góc với AC. Chứng minh ΔAMN cân
c) Chứng minh AH2 + BM2 = AN2 + BH2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H:
\(AB=AC\) (\(\Delta ABC\) cân tại A).
\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).
\(\Rightarrow\Delta AHB=\) \(\Delta AHC\left(ch-gn\right).\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}.\)
Xét \(\Delta AMH\) vuông tại M và \(\Delta ANH\) vuông tại N:
\(AHchung.\\ \widehat{MAH}=\widehat{NAH}\left(\widehat{BAH}=\widehat{CAH}\right).\\ \Rightarrow\Delta AMH=\Delta ANH\left(ch-gn\right).\)
Xét \(\Delta AMN:AM=AN\left(\Delta AMH=\Delta ANH\right).\)
\(\Rightarrow\Delta AMN\) cân tại A.
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)
Mà \(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (\(\Delta ABC\) cân tại A).
\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC.\)
tự kẻ hình nghen :33333
a) Xét tam giác AHB và tam giác AHC có
AH chung
AHC=AHB(=90 độ)
AB=AC(gt)
=> tam giác AHB= tam giac AHC(ch-cgv)
b) từ tam giác AHB= tam giác AHC=> A1=A2( hai góc tương ứng )
Xét tam giác AMH và tam giác ANH có
A1=A2(cmt)
AH chung
AMH=ANH(=90 độ)
=> tam giấcMH=tam giác ANH(ch-gnh)
=> AM=AN( hai cạnh tương ứng)
=> tam giác AMN cân A
a, phải là cmr: TG AHB=TG AHC
TG AHB và TG AHC có: AH chung; góc AHC=góc AHB (=90 độ) và AB=AC(GT) tùa 3 điều trên =>TG AHB=TG AHC(cgv.ch)(đpcm) và cũng do đó: góc BAH=góc CAH
b,Nối M->N
TG AHM và TG AHN có: AH chung; góc AMH=góc AHN (=90 độ) và góc BAH=góc CAH(cm trên) từ 3 điều trên=>TG AHM = TG AHN(ch.gn)=>AM=AN
Mặt khác TG AMN có AM=AN(cm trên)=>TG AMN(đn tg cân)
c,Ta có: tg ABC có góc A+ góc B+góc C=180 độ(đlí tổng 3 góc tg) mà góc ABC=góc ACB(t/c tg cân)=>góc ABC=góc ACB=180 độ-góc A(1)
Và tg AMN có góc MAN+góc ANM+góc AMN=180 độ mà góc AMN=góc ANM(t/c tg cân)=> góc ANM=góc AMN=180 độ-góc MAN(đlí tổng 3 góc tam giác)(2)
(1) và (2) suy ra: góc ABC=góc ACB=góc ANM=góc AMN(= góc MAN)
góc ABC=góc AMN mà góc ABC và góc AMN là hai góc SLT=>MN ss BC(đpcm)
a) Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H:
AB = AC (Tam giác ABC cân tại A).
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right).\)
b) Xét tam giác ABC cân tại A:
AH là đường cao (AH ⊥ BC).
\(\Rightarrow\) AH là đường trung tuyến (T/c tam giác cân).
\(\Rightarrow\) H là trung điểm BC.
Xét tam giác MBH vuông tại M và tam giác NCH vuông tại N:
BH = CH (H là trung điểm BC).
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).
\(\Rightarrow\Delta MBH=\Delta NCH\left(ch-gn\right).\\ \Rightarrow BM=CN.\)
Ta có: \(AM=AB-BM;AN=AC-CN.\)
Mà \(\left\{{}\begin{matrix}AB=AC\\BM=CN\end{matrix}\right.\) (cmt).
\(\Rightarrow AM=AN.\Rightarrow\Delta AMN\) cân tại A.
c) Xét tam giác AMN cân tại A:
\(\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)
Xét tam giác ABC cân tại A:
\(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}.\)
\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC\left(dhnb\right).\)
a/ Xét tam giác AHB và tam giác AHC
Góc AHB=AHC=90 độ
AB=AC(tam giác ABC cân tại A)
Góc B=C (tam giác ABC cân tại A)
=> Tam giác ABH=ACH(ch-gn)
mk nha
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: AH=12cm
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
d: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a, Xét tam giác AHB và tam giác AHC có
AH _ chung
AB = AC
Vậy tam giác AHB~ tam giác AHC (ch-cgv)
Ta có tam giác ABC cân tại A, có AH là đường cao
đồng thười là đường pg
b, Xét tam giác AMH và tam giác NAH có
HA _ chung
^MAH = ^NAH
Vậy tam giác AMH = tam giác NAH (ch-gn)
=> AM = AN ( 2 cạnh tương ứng )
c, Ta có AM/AB = AN/AC => MN // BC
d, Ta có \(AH^2+BM^2=AN^2+BH^2\)
Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)
Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)
Lại có AM = AN (cmt)
\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M)
Vậy ta có đpcm
a) Xét ΔAHM vuông tại M và ΔAHN vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)(AH là tia phân giác của \(\widehat{MAN}\))
Do đó: ΔAHM=ΔAHN(cạnh huyền-góc nhọn)
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)
b) Ta có: ΔAHB=ΔAHC(cmt)
nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAH}=\widehat{NAH}\)
Xét ΔMAH vuông tại M và ΔNAH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)(cmt)
Do đó: ΔMAH=ΔNAH(cạnh huyền-góc nhọn)
Suy ra: AM=AN(hai cạnh tương ứng)
Xét ΔMAN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)