Tìm m để \(x\in\left[0;\infty\right]\) đều là nghiệm của bất phương trình \(\left(m^2-1\right)x-8mx+9-m^2\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=\dfrac{-m^2-1}{\left(x-m\right)^2}\)
\(y'< 0\) ;\(\forall x\in\left(0;1\right)\Leftrightarrow\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\)
\(\left|mx-3\right|=mx-3\Leftrightarrow mx-3\ge0\) \(\Rightarrow\left[{}\begin{matrix}x\ge\dfrac{3}{m}\left(m>0\right)\\x\le\dfrac{3}{m}\left(m< 0\right)\end{matrix}\right.\)
\(x^2-4=0\Rightarrow x=\pm2\Rightarrow B=\left\{-2;2\right\}\)
\(B\backslash A=B\Leftrightarrow A\cap B=\varnothing\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{m}>2\left(m>0\right)\\\dfrac{3}{m}< -2\left(m< 0\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0< m< \dfrac{3}{2}\\-\dfrac{3}{2}< m< 0\end{matrix}\right.\)
\(\Delta=\left(2m-2\right)^2-4\cdot1\cdot4=4m^2-8m+16-16=4m^2-8m\)
Để BPT luôn đúng thì 4m^2-8m<0
=>4m(m-2)<0
=>0<m<2
\(x^2+2\left(m-1\right)x+4>0\forall x\inℝ\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-4< 0\)
\(\Leftrightarrow\left(m-3\right)\left(m+1\right)< 0\Leftrightarrow-1< m< 3\).
TH1: \(m=3\Rightarrow f\left(x\right)=-5< 0\) với mọi x(ktm)
TH2: \(m>3\Rightarrow f\left(x\right)\) đồng biến trên R
\(\Rightarrow\min\limits_{\left[3;4\right]}f\left(x\right)=f\left(3\right)=3\left(m-3\right)-2m+1=m-8\)
\(m-8>0\Rightarrow m>8\)
TH3: \(m< 3\Rightarrow f\left(x\right)\) nghịch biến trên R
\(\Rightarrow\min\limits_{\left[3;4\right]}=f\left(4\right)=4\left(m-3\right)-2m+1=2m-11\)
\(2m-11>0\Rightarrow m>\dfrac{11}{2}\) (ktm điều kiện \(m< 3\))
Kết hợp lại ta được \(m>8\)
\(\Delta'=m^2-2m+3>0\) ; \(\forall x\)
Do đó bài toán thỏa mãn khi pt \(f\left(x\right)=0\) có 2 nghiệm thỏa mãn: \(x_1< -1< 2< x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}a.f\left(-1\right)< 0\\a.f\left(2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1.\left(1-2m+2m-3\right)< 0\\1\left(4+4m+2m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow6m+1< 0\Rightarrow m< -\dfrac{1}{6}\)
- Với \(m=\pm1\) không thỏa mãn
- Với \(m\ne\pm1\) ta có:
\(\Delta'=16m^2-\left(m^2-1\right)\left(9-m^2\right)=\left(m^2+3\right)^2>0\) ; \(\forall m\)
\(\Rightarrow\) BPT đã cho đúng với mọi \(x\ge0\) khi và chỉ khi: \(\left\{{}\begin{matrix}m^2-1>0\\x_1< x_2\le0\end{matrix}\right.\) (pt hệ số a dương đồng thời có 2 nghiệm ko dương)
\(\Leftrightarrow\left\{{}\begin{matrix}a=m^2-1>0\\x_1+x_2=\dfrac{8m}{m^2-1}< 0\\x_1x_2=\dfrac{9-m^2}{m^2-1}\ge0\end{matrix}\right.\) \(\Leftrightarrow-3\le m< -1\)
(Nếu \(\Delta\) không luôn dương với mọi m, ví dụ dạng \(\Delta=m^2-3m+2\) chẳng hạn thì còn 1 TH thỏa mãn nữa là \(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\))
\(\left(m^2-1\right)x-8m+9-m^2\ge0\)
\(\Leftrightarrow\left(m^2-8m-1\right)x\ge m^2-9\)
- Với \(m=4+\sqrt{17}\) ko thỏa mãn
- Với \(m=4-\sqrt{17}\) thỏa mãn
- Với \(m\ne4\pm\sqrt{17}\)
Pt nghiệm đúng với mọi \(x\ge0\) khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2-8m-1>0\\\dfrac{m^2-9}{m^2-8m-1}\le0\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m-1>0\\m^2-9\le0\end{matrix}\right.\)
\(\Leftrightarrow-3\le m< 4-\sqrt{17}\)
Vậy \(-3\le m\le4-\sqrt{17}\)