Cho tam giac ABC can tai A. Tren tia doi cua tia BC lay diem D, tren tia doi cua tia CB lay diem E sao cho BD = CE.
a) CM: tam giac ADE can.
b) Goi M la trung diem cua BC. CM: AM la tia phan giac cua goc DAE va AM vuong DE.
c) Tu B ke BH vuong goc AD (H€AD). Tu C ke CK vuong goc AE (K€AE). CM: BH=CK.
d) CM: Ba duong thang AM,BH,CK gap nhau tai mot diem.
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE