Nghiệm nguyên 4x-3y=1 của phương trình thỏa-16<x+y<-2 là(x;y) .Khi đó X.y=?
Hộ mk cái ai có kq đúng xẽ dc tick ngay
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo:
<=> 2x^2+3y^2+4x -19 =0
<=> 2.(x2 + 2x +1) + 3.y2 = 21
<=> 2.(x+1)2 + 3. y2 = 21
Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 ≤≤≤ 21 và (x+1)2 là số chính phương
=> (x+1)2 =0 hoặc 9
+) x + 1 = 0 => x = -1 => y 2 = 7 => loại
+) (x+1)2 = 9 => y2 = 1
=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4
y2 = 1 => y = 1 hoặc y = -1
Vậy....
Ta có −4x + 3y = 8 ⇔ y = 4 x + 8 3 ⇔ y = x + x + 8 3
Đặt x + 8 3 = t ⇒ x = 3t – 8 ⇒ y = 3t – 8 + t ⇒ y = 4t – 8 ( )
Nên nghiệm nguyên của phương trình là x = 3 t − 8 y = 4 t − 8 t ∈ ℤ
Vì x, y nguyên dương nên x > 0 y > 0 ⇒ 3 t − 8 > 0 4 t − 8 > 0 ⇒ t > 8 3 t > 2 ⇒ t > 8 3
mà t ∈ ℤ ⇒ t ≥ 3
Nghiệm nguyên dương nhỏ nhất của phương trình là x = 3.3 − 8 y = 4.3 − 8 ⇔ x = 1 y = 4
⇒ x + y = 5
Đáp án: A
\(2x^2+3y^2+4x=19\)
<=> \(2\left(x^2+2x+1\right)+3y^2=21\)
<=> \(2\left(x+1\right)^2+3y^2=21\)
<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)
=> \(y^2\le7\)(1)
Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)
=> 21 - 3y^2 là số chẵn => 3y^2 là số lẻ => y^2 là số chính phương lẻ (2)
Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1
=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4
Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)
20 nhé bạn, nhé
x=-4;y=-5 ;xy=20