K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
ĐKXĐ: $x\geq 0; y\geq 1; z\geq 2$

PT \(\Leftrightarrow (x-2\sqrt{x}+1)+[(y-1)-4\sqrt{y-1}+4]+[(z-2)-6\sqrt{z-2}+9]=0\)

\(\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-2)^2+(\sqrt{z-2}-3)^2=0\)

Vì \((\sqrt{x}-1)^2, (\sqrt{y-1}-2)^2, (\sqrt{z-2}-3)^2\geq 0\) nên để tổng của chúng bằng $0$ thì:
\((\sqrt{x}-1)^2=(\sqrt{y-1}-2)^2=(\sqrt{z-2}-3)^2=0\)

$\Leftrightarrow x=1; y=5; z=11$

6 tháng 4 2021

ĐKXĐ : \(2\le x,y,z\le4\)

Từ hệ phương trình ta suy ra được

\(\Sigma x+\Sigma\sqrt{x-2}+\Sigma\sqrt{4-x}=\Sigma x^2-5\Sigma x+33\\ \Leftrightarrow\Sigma\left(x^2-6x+9\right)+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\\ \Leftrightarrow\Sigma\left(x-3\right)^2+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\left(1\right)\)

Áp dụng bất đẳng thức \(\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\)

\(\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\Sigma\sqrt{2\left(x-2+4-x\right)}=\Sigma2=6\)

\(\Rightarrow\Sigma\left(x-3\right)^2+6\le6\Rightarrow\Sigma\left(x-3\right)^2\le0\)

Mà \(\Sigma\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2=\left(y-3\right)^2=\left(z-3\right)^2=0\\ \Leftrightarrow x=y=z=3\)

Thay vào ta thấy thỏa mãn -> x=y=z=3 là nghiệm hpt

2 tháng 9 2020

Bạn xem lại đề câu b và c nhé !

a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)

\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)

\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ

\(\Rightarrow x\ge2\) thỏa mãn đề.

d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)

\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)

Pt tương đương :

\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )

e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)

\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)

Phương trình (1) tương đương :

\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )

16 tháng 9 2021

\(a,\) Sửa đề: \(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}=5\)

Ta thấy \(3x^2-12x+16=3\left(x-2\right)^2+4\ge4\Leftrightarrow\sqrt{3x^2-12x+16}\ge\sqrt{4}=2\)

\(y^2-4y+13=\left(y-2\right)^2+9\ge9\Leftrightarrow\sqrt{y^2-4y+13}\ge\sqrt{9}=3\)

Cộng vế theo vế 2 BĐT trên:

\(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}\ge2+3=5\)

Dấu \("="\Leftrightarrow x=y=2\)

Vậy pt có nghiệm \(\left(x;y\right)=\left(2;2\right)\)

 

16 tháng 9 2021

\(b,x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ \Leftrightarrow x+y+z+4-2\sqrt{x-2}-4\sqrt{y-3}-6\sqrt{z-5}=0\\ \Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5+6\sqrt{z-5}+9\right)=0\\ \Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\y-3=4\\z-5=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)

16 tháng 2 2020

một số bằng 4 và hai số kia bằng 1

có 3 nghiệm

16 tháng 2 2020

Bạn giải chi tiết giúp mình được ko

6 tháng 6 2019

Làm hơi tắt , thông cảm  ;))

Từ (1) \(\Rightarrow36=\left(x+y+z\right)^2\Leftrightarrow36=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

          \(\Leftrightarrow36=18+2\left(xy+yz+zx\right)\Leftrightarrow xy+yz+zx=9\)(4)

Từ (3) \(\Rightarrow16=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\Leftrightarrow16=x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

          \(\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=5\Leftrightarrow\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2=25\)

         \(\Leftrightarrow xy+yz+zx+2\left(\sqrt{xy^2z}+\sqrt{xyz^2}+\sqrt{x^2yz}\right)=25\)

         \(\Leftrightarrow\sqrt{xyz}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)=8\Leftrightarrow\sqrt{xyz}=\frac{8}{4}\Leftrightarrow xyz=4\)(5)

Vậy hệ đã cho tương đương với :

\(\hept{\begin{cases}x+y+z=6\left(1\right)\\xy+yz+zx=9\left(4\right)\\xyz=4\left(5\right)\end{cases}}\)

Từ (5) \(\Rightarrow yz=\frac{4}{x}\)(Dễ thấy \(x,y,z>0\))

     (4)  \(\Leftrightarrow xy+yz+zx+x^2=9+x^2\Leftrightarrow x\left(x+y+z\right)+yz=9+x^2\)

           \(\Leftrightarrow x.6+\frac{4}{x}=9+x^2\Leftrightarrow x^3-6x^2+9x-4=0\)

           \(\Leftrightarrow\left(x-1\right)^2\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}.}\)

Thế vào ta suy ra hệ có các nghiệm : \(\left(x,y,z\right)=\left(1,1,4\right),\left(1,4,1\right),\left(4,1,1\right).\)

            

6 tháng 6 2019

thanks bạn Đào Thu Hòa