Cho tam giác ABC , góc A = 90 độ . Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia Cx sao cho CA là tia phân giác của góc BCx . Từ A kẻ AE vuông Cx , kẻ từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC
Chứng minh rằng
a, A là trung điểm của DE
b, tam giác DHE = 90 độ
Nhớ tự vẽ hình ở nhà nhe hahaha!
a, Do BD vuông góc với AE thì ta đã biết A,D,E thẳng hàng vậy ta chỉ còn chứng minh AE=AD thì A sẽ là trung điểm của DE
Xét tam giác vuông AHC và tam giác vuông AEC, ta có
góc ACH = góc ACE (CA là tia phân giác góc BCx)
AC: cạnh chung
Do đó tam giác AHC = tam giác AEC (cạnh huyền-góc nhọn)
Suy ra AE=AH(1), góc HAC=góc CAE
Ta có góc DAB+góc BAH+góc HAC + góc CAE=180 độ mà góc BAH+HAC=90
Suy ra góc DAB+CAE=90 mà CAE =HAC (hai tam giác bằng nhau o trên)
Suy ra DAB+HAC=90 mà BAH+HAC=90
Suy ra DAB=BAH
Xét hai tam giác vuông ADB và AHB
AB cạnh chung
DAB=BAH(chung minh tren)
Do đó Hai tam giac bang nhau (cạnh huyền-góc nhọn)
Suy ra DA=AH(2)
Từ (1),(2) suy ra AD=AE
mà D,A,E thẳng hàng
Suy ra A là trung điểm của DE
b, Dùng định lý đảo của đường trung tuyến trong tam giác vuông
Ta có tam giác DHE có HA là đường trung tuyến và HA = 1/2 DE
Suy ra tam giác DHE vuông tại H(cố gắng sẽ thành công hahaha)
câu b có cách khác ko