Cho tam giác ABC, hai đường cao BD, CE.Gọi M và N lần lượt là trung điểm của BC và DE.CMR MN vuông góc với DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath
Xét tam giác BDC: ^BDC=900, Mà trung điểm của BC => DM=BM=CM
Tương tự: EM=BM=CM
=> DM=EM => Tam giác EMD cân tại M.
Ta có: N là trung điểm của DE => MN là đường trung tuyến, cũng là đường cao của tam giác EMD.
=> MN vuông góc DE (đpcm).
a,Xét tam giác BDC:
Ta có: \(\hept{\begin{cases}gócD=90^0\\BM=MC\end{cases}\Rightarrow DM=\frac{1}{2}BC}\) (1)
Xét tam giác BEC:
Ta có: \(\hept{\begin{cases}gócE=90^0\\BM=MC\end{cases}\Rightarrow EM=\frac{1}{2}BC}\) (2)
Từ (1) và (2): \(\Rightarrow EM=MD=\frac{1}{2}BC\)
Suy ra: tam giác EMD là tam giác cân.
Lại có: N là trung điểm của tam giác can EMD.
Hay: N là đường cao của tam giác EMD
Vậy MN vuông góc với ED
b,Bó tay