lim \(\dfrac{3x-5sin2x+cos^2x}{x^2+2}\)
x-> +∞
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\lim\limits_{x\to (-1)-}\frac{\sqrt{x^2-3x-4}}{1-x^2}=\lim\limits_{x\to (-1)-}\frac{\sqrt{(x+1)(x-4)}}{(1-x)(1+x)}\)
\(=\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{(x-1)\sqrt{-(x+1)}}=-\infty\) do:
\(\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{x-1}=\frac{-\sqrt{5}}{2}<0\) và \(\lim\limits_{x\to (-1)-}\frac{1}{\sqrt{-(x+1)}}=+\infty\)
2.
\(\lim\limits_{x\to 2+}\left(\frac{1}{x-2}-\frac{x+1}{\sqrt{x+2}-2}\right)=\lim\limits_{x\to 2+}\frac{1-(x+1)(\sqrt{x+2}+2)}{x-2}=-\infty\) do:
\(\lim\limits_{x\to 2+}\frac{1}{x-2}=+\infty\) và \(\lim\limits_{x\to 2+}[1-(x+1)(\sqrt{x+2}+2)]=-11<0\)
1 ) \(lim_{x\rightarrow+\infty}\dfrac{3x^2+5}{x^3-x+2}=lim_{x\rightarrow+\infty}\dfrac{\dfrac{3}{x}+\dfrac{5}{x^3}}{1-\dfrac{1}{x^2}+\dfrac{2}{x^3}}=0\)
2 ) \(lim_{x\rightarrow-\infty}\dfrac{2x^2\left(3x^2-5\right)^3\left(1-x\right)^5}{3x^{14}+x^2-1}\) \(=lim_{x\rightarrow-\infty}\dfrac{\dfrac{2}{x}\left(3-\dfrac{5}{x^2}\right)^3\left(\dfrac{1}{x}-1\right)^5}{3+\dfrac{1}{x^{12}}-\dfrac{1}{x^{14}}}=0\)
3 ) \(lim_{x\rightarrow+\infty}\dfrac{3x-\sqrt{2x^2+5}}{x^2-4}=lim_{x\rightarrow+\infty}\dfrac{\left(7x^2-5\right)}{\left(3x+\sqrt{2x^2+5}\right)\left(x^2-4\right)}\)
\(=lim_{x\rightarrow+\infty}\dfrac{\dfrac{7}{x}-\dfrac{5}{x^3}}{\left(3+\sqrt{2+\dfrac{5}{x^2}}\right)\left(1-\dfrac{4}{x^2}\right)}=0\)
1/ \(=\lim\limits_{x\rightarrow0}\dfrac{3\left(1+3x\right)^2.3+4.4\left(1-4x\right)^3}{1}=...\left(thay-x-vo\right)\)
2/ \(=\lim\limits_{x\rightarrow2}\dfrac{2.2.x-5}{3x^2-3}=\dfrac{4.2-5}{3.4-3}=\dfrac{1}{3}\)
3/ \(=\lim\limits_{x\rightarrow1}\dfrac{4x^3-3}{3x^2+2}=\dfrac{4.1-3}{3.1-2}=1\)
Xai L'Hospital nhe :v
câu 1 bạn lm kiểu j vậy chả hiểu luôn bạn có thể lm lại chi tiết hơn dc ko
1.
Do \(\lim\limits_{x\rightarrow2}\left(3x-5\right)=1>0\)
\(\lim\limits_{x\rightarrow2}\left(x-2\right)^2=0\)
\(\left(x-2\right)^2>0;\forall x\ne2\)
\(\Rightarrow\lim\limits_{x\rightarrow2}\dfrac{3x-5}{\left(x-2\right)^2}=+\infty\)
2.
\(\lim\limits_{x\rightarrow1^-}\left(2x-7\right)=-5< 0\)
\(\lim\limits_{x\rightarrow1^-}\left(x-1\right)=0\)
\(x-1< 0;\forall x< 1\)
\(\Rightarrow\lim\limits_{x\rightarrow1^-}\dfrac{2x-7}{x-1}=+\infty\)
3.
\(\lim\limits_{x\rightarrow1^+}\left(2x-7\right)=-5< 0\)
\(\lim\limits_{x\rightarrow1^+}\left(x-1\right)=0\)
\(x-1>0;\forall x>1\)
\(\Rightarrow\lim\limits_{x\rightarrow1^+}\dfrac{2x-7}{x-1}=-\infty\)
b/ \(=\lim\limits_{x\rightarrow+\infty}\sqrt{\dfrac{\dfrac{x^2}{x^4}+\dfrac{1}{x^4}}{\dfrac{2x^4}{x^4}+\dfrac{x^2}{x^4}-\dfrac{3}{x^4}}}=0\)
a/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{2x}{x}-\sqrt{\dfrac{3x^2}{x^2}+\dfrac{2}{x^2}}}{\dfrac{5x}{x}+\sqrt{\dfrac{x^2}{x^2}+\dfrac{2}{x^2}}}=\dfrac{2-\sqrt{3}}{5+1}=\dfrac{2-\sqrt{3}}{6}\)
b/ x tien toi duong vo cung hay am vo cung ban?
\(a=\lim\limits_{x\rightarrow2}\dfrac{\left(x^2-x-2\right)\left(x^2+x\sqrt[3]{3x+2}+\sqrt[3]{\left(3x+2\right)^2}\right)}{\left(x^3-3x-2\right)\left(x+\sqrt[]{x+2}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+1\right)\left(x^2+x\sqrt[3]{3x+2}+\sqrt[3]{\left(3x+2\right)^2}\right)}{\left(x-2\right)\left(x+1\right)^2\left(x+\sqrt[]{x+2}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+x\sqrt[3]{3x+2}+\sqrt[3]{\left(3x+2\right)^2}}{\left(x+1\right)\left(x+\sqrt[]{x+2}\right)}=...\)
\(b=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt[]{1+2x}-x-1\right)+\left(x+1-\sqrt[3]{1+3x}\right)}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x^2}{\sqrt[]{1+2x}+x+1}+\dfrac{x^3+3x^2}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{1}{\sqrt[]{1+2x}+x+1}+\dfrac{x+3}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}\right)\)
\(=...\)
\(c=\lim\limits_{x\rightarrow-1}\dfrac{\left(\sqrt[]{5+4x}-2x-3\right)+\left(2x+3-\sqrt[3]{7+6x}\right)}{x^3+x^2-x-1}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{5+4x-\left(2x+3\right)^2}{2x+3+\sqrt[]{5+4x}}+\dfrac{\left(2x+3\right)^3-\left(7+6x\right)}{\left(2x+3\right)^2+\left(2x+3\right)\sqrt[3]{7+6x}+\sqrt[3]{\left(7+6x\right)^2}}}{\left(x-1\right)\left(x+1\right)^2}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{-4\left(x+1\right)^2}{2x+3+\sqrt[]{5+4x}}+\dfrac{\left(x+1\right)^2\left(8x+20\right)}{\left(2x+3\right)^2+\left(2x+3\right)\sqrt[3]{7+6x}+\sqrt[3]{\left(7+6x\right)^2}}}{\left(x-1\right)\left(x+1\right)^2}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{-4}{2x+3+\sqrt[]{5+4x}}+\dfrac{8x+20}{\left(2x+3\right)^2+\left(2x+3\right)\sqrt[3]{7+6x}+\sqrt[3]{\left(7+6x\right)^2}}}{x-1}\)
\(=...\)
\(\lim\limits_{x\rightarrow2}\dfrac{2x-\sqrt{3x^2+2x}}{x^2-3x+2}=\lim\limits_{x\rightarrow2}\dfrac{\left(2x-\sqrt{3x^2+2x}\right)\left(2x+\sqrt{3x^2+2x}\right)}{\left(x-1\right)\left(x-2\right)\left(2x+\sqrt{3x^2+2x}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x^2-2x}{\left(x-1\right)\left(x-2\right)\left(2x+\sqrt{3x^2+2x}\right)}\)
\(\lim\limits_{x\rightarrow2}\dfrac{x}{\left(x-1\right)\left(2x+\sqrt{3x^2+2x}\right)}=\dfrac{2}{1\left(4+4\right)}=\dfrac{1}{4}\)
a/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}\sqrt{x^2+1}+\dfrac{2x}{x}+\dfrac{1}{x}}{\dfrac{x}{x}\sqrt[3]{\dfrac{2x^3}{x^3}+\dfrac{x}{x^3}+\dfrac{1}{x^3}}+\dfrac{x}{x}}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}+2}{\sqrt[3]{2}+1}=+\infty\)
b/ \(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2.1^2-1+1}-\sqrt[3]{2.1+3}}{3.1^2-2}=...\)
c/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{x\sqrt{\dfrac{4x^2}{x^2}+\dfrac{x}{x^2}}+x\sqrt[3]{\dfrac{8x^3}{x^3}+\dfrac{x}{x^3}-\dfrac{1}{x^3}}}{x\sqrt[4]{\dfrac{x^4}{x^4}+\dfrac{3}{x^4}}}=\dfrac{2+2}{1}=4\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{3x}{x^2+2}-\lim\limits_{x\rightarrow+\infty}\dfrac{5\sin2x}{x^2+2}+\lim\limits_{x\rightarrow+\infty}\dfrac{\cos^2x}{x^2+2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{3x}{x^2+2}=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{3x}{x^2}}{\dfrac{x^2}{x^2}+\dfrac{2}{x^2}}=0\)
\(-1\le\sin2x\le1\Rightarrow\dfrac{-5}{x^2+2}\le\dfrac{5\sin2x}{x^2+2}\le\dfrac{5}{x^2+2}\)
\(\lim\limits_{x\rightarrow+\infty}-\dfrac{5}{x^2+2}=\lim\limits_{x\rightarrow+\infty}\dfrac{5}{x^2+2}=0\Rightarrow\lim\limits_{x\rightarrow+\infty}\dfrac{5\sin2x}{x^2+2}=0\)
\(0\le\cos^2x\le1\Rightarrow0\le\dfrac{\cos^2x}{x^2+2}\le\dfrac{1}{x^2+2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{1}{x^2+2}=0\Rightarrow\lim\limits_{x\rightarrow+\infty}\dfrac{\cos^2x}{x^2+2}=0\)
\(\Rightarrow\lim\limits_{x\rightarrow+\infty}\dfrac{3x-5\sin2x+\cos^2x}{x^2+2}=0\)