Cho ∆ ABC vuông tại A , Đường cao AD , F là điểm đối xứng của D qua A , E là hình chiếu của C trên BF , CE cắt A D tại I . Chứng Minh rằng:
a. AB².DC = AC².BD
b. ∆CAI đồng dạng với ∆CEA
c. I là trung điểm của AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có AD là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BD\cdot BC\\AC^2=CD\cdot BC\end{matrix}\right.\Leftrightarrow AB^2\cdot DC=AC^2\cdot BD\)
a/
Ta có A và E cùng nhìn BC dưới 1 góc vuông => ACBE là tứ giác nội tiếp đường tròn đường kính BC
\(\Rightarrow\widehat{AEC}=\widehat{ABC}\) (góc nội tiếp cùng chắn cung AC) (1)
Xét tg vuông ABC có \(\widehat{ABC}+\widehat{ACB}=90^o\)
Xét tg vuông ACD có \(\widehat{CAD}+\widehat{ACB}=90^o\)
\(\Rightarrow\widehat{ABC}=\widehat{CAD}\) (cùng phụ với \(\widehat{ACB}\)) (2)
Từ (1) và (2) \(\Rightarrow\widehat{AEC}=\widehat{CAD}\)
Xét \(\Delta CAI\) và \(\Delta CEA\) có
\(\widehat{AEC}=\widehat{CAD};\widehat{ACE}\) chung \(\Rightarrow\Delta CAI\) đồng dạng với \(\Delta CAE\) (g.g.g)
b/
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
Lời giải:
a. Áp dụng HTL trong tam giác vuông:
$AB^2=BD.BC$
$AC^2=CD.CB$
$\Rightarrow \frac{AB^2}{AC^2}=\frac{BD}{CD}$
$\Rightarrow AB^2.CD=AC^2.BD$ (đpcm)
b.
Tứ giác $BEAC$ có $\widehat{BEC}=\widehat{BAC}=90^0$ và cùng nhìn cạnh $BC$ nên $BEAC$ là tứ giác nội tiếp
$\Rightarrow \widehat{AEC}=\widehat{ABC}=\widehat{IAC}$
Xét tam giác $CAI$ và $CEA$
$\widehat{C}$ chung
$\widehat{AEC}=\widehat{IAC}$ (cmt)
$\Rightarrow \triangle CAI\sim \triangle CEA$ (g.g)
c.
$\widehat{F_1}=90^0-\widehat{EIF}=90^0-\widehat{DIC}=\widehat{C_1}$
$\Rightarrow \triangle BFD\sim \triangle ICD$ (g.g)
$\Rightarrow \frac{BD}{ID}=\frac{FD}{CD}$
$\Rightarrow BD.CD=ID.FD$
Mà $BD.CD=AD^2$ (HTL trong tam giác vuông)
$\Rightarrow AD^2=ID.FD$
$\Rightarrow \frac{ID}{AD}=\frac{AD}{FD}=\frac{1}{2}$
$\Rightarrow I$ là trung điểm $AD$
Hình vẽ: