D = 12 + 22 + 32 + .... + n2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK
S=1.4+2.5+3.6+4.7+....+n.(n+3) S = 1. ( 2 + 2 ) + 2. ( 3 + 2 ) + 3. ( 4 + 2 ) + . . . + n . [ ( n + 1 ) + 2 ] S = 1.2 + 2.3 + 3.4 + . . . . + n . ( n + 1 ) + ( 1.2 + 2.2 + 3.2 + . . . . + n .2 ) Đặt A = 1.2 + 2.3 + 3.4 + . . . . + n . ( n + 1 ) 3 A = 1.2.3 + 2.3. ( 4 − 1 ) + . . . . + n . ( n + 1 ) . [ ( n + 2 ) − ( n − 1 ) 3 A = 1.2.3 + 2.3.4 − 1.2.3 + . . . . + n . ( n + 1 ) . ( n + 2 ) − ( n − 1 ) . n . ( n + 1 ) 3 A = n . ( n + 1 ) . ( n + 2 ) A = [ n . ( n + 1 ) . ( n + 2 ) ] : 3 S = [ n . ( n + 1 ) . ( n + 2 ) ] : 3 + 2. ( 1 + 2 + 3 + . . . + n ) S = [ n . ( n + 1 ) . ( n + 2 ) ] : 3 + 2. n . ( n + 1 ) : 2 S = n . ( n + 1 ) . ( n + 2 ) : 3 + n . ( n + 1 ) S = n . ( n + 1 ) . [ ( n + 2 ) : 3 + 1 )
D = 1^2 + 2^2 + 3^2 + ... + n^2
= 1.( 2 - 1 ) + 2.( 3-1 ) + 3.( 4-1 ) + .... + n.[ ( n+ 1) - 1 ]
= 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + .... + n.( n+1 ) - n
= [ 1.2 + 2.3 + 3.4 + ..... + n.( n + 1 ) ] - ( 1 + 2 + 3 + .... + n )
= { [ n.( n+1 ).( n+2 )] /3 } - { [ n.( n+1)] /2 }
= { n(n+1)(2n+1) }/ 6
Vậy.........
+ Với n = 1 :
⇒ (3) đúng với n = 1
+ Giả sử đẳng thức (3) đúng với n = k nghĩa là :
Cần chứng minh (3) đúng khi n = k + 1, tức là:
Thật vậy:
Với A1 = 12. Ta sẽ chứng minh An =1 + 3 + ... + (2n-1) = n2 (đáp án d)
Giả sử An đúng với n = k tức Ak = 1 + 3 + ... + (2k - 1) = k2. Ta sẽ chứng minh nó cũng đúng với Ak+1
Thật vậy: Ak+1 = 1 + 3 + ... + (2k-1) + (2k+1) = Ak + 2k + 1 = k2 + 2k + 1 = (k+1)2
Vậy...
#include <bits/stdc++.h>
using namespace std;
long long n,i,s;
int main()
{
cin>>n;
s=0;
for (i=1; i<=n; i++) s=s+i*i;
cout<<s;
return 0;
}
Var s,i,n:longint;
Begin
Write('Nhap so luong so n = ');readln(n);
For i:=1 to n do
s:=s+i*i;
Write('Tong la ',s);
Readln;
End.
- Xác định bài toán (0,5đ)
Input: Nhập N và dãy a 1 , a 2 , . . . , a n
Output: Đưa ra kết quả tổng S
- Thuật toán (1,75đ):
Bước 1: Nhập N và a 1 , a 2 , . . . , a n
Bước 2: S ← 0; i ← 1
Bước 3: Nếu i >Nthì đưa ra S rồi kết thúc
Bước 4: Nếu ai⟨0 thì S ←S+ a i 2
Bước 5: i ← i + 1 và quay lại Bước 3
D=1212+2222+3232+....+ n2n2
D=1+ 2.(1+1) + 3.(2+1) +.....+ n(n-1 +1)
D=1 + 1.2 +2 + 2.3 + 3 +.......+ (n-1).n + n
D= (1 + 2 +3 +....+n) + (1.2 + 2.3 + 3.4 + ......+ (n-1)n )
D= n(n+1)2n(n+1)2 + n(n+1)(n−1)3n(n+1)(n−1)3
D= 3n(n+1)+2n(n+1)(n−1)63n(n+1)+2n(n+1)(n−1)6
D= n(n+1)(2n+1)6