Bài25. Cho đường tròn (O; R) và dây AB (AB < 2R). Gọi C là điểm chính giữa cung nhỏ AB, lấy điểm D trên cung lớn AB ( AD > BD). Dây AB cắt OC, CD lần lượt tại I và E. Từ B kẻ BH vuông góc với CD tại H. Chứng minh: BCIH là tứ giác nội tiếp. Chứng minh: CE. CD không phụ thuộc vào vị trí của điểm D trên cung lớn AB. Tia IH cắt BD tại F. Chứng minh: AD = 2IF. Xác định vị trí của D trên cung lớn AB sao cho chu vi của tam giác OBF đạt giá trị lớn nhấBài 28. Cho đường tròn (O; R) và đường thẳng d không có điểm chung với đường tròn. Hạ OA vuông góc với d tại A. Gọi B là một điểm thuộc đường thẳng d ( B không trùng A). Qua B kẻ hai tiếp tuyến BC, BD tới đường tròn (C, D là tiếp điểm). Nối CD cắt OB tại E, cắt OA tại F. Chứng minh: bốn điểm B, C, O, D thuộc một đường tròn. Chứng minh: OA. OF = OB . OE Đoạn thẳng OB cắt đường tròn (O) tại I. Chứng minh: I cách đều ba cạnh của tam giác BCD. Tìm vị trí của B trên đường thẳng d để √(OE.EF) đạt giá trị lớn nhất.Bài 29. Cho đường tròn nửa (O), đường kính AB = 2R. Gọi Ax, By lần lượt là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B. Lấy điểm K nằm giữa A và B (K không trùng A, B) và điểm M thuộc nửa đường tròn (O) (M không trùng A, B). Đường thẳng vuông góc với MK tại M cắt Ax, By lần lượt tại C và D. Chứng minh: ACMK là tứ giác nội tiếp. Chứng minh: (MDK) ̂=(MBK) ̂ . Từ đó chứng minh: CK DK. Gọi giao điểm AM và CK là E, giao điểm của BM và DK là F. Tứ giác AEFK là hình gì? Tại sao? Với AM = R và K là trung điểm của AO. Tính EF/MK ?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan