tìm n thuộc Z sao cho:n+3 chia hết n^2-7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n2 + 3 chia hết cho n - 1
\(\Leftrightarrow n^2-1+4⋮n-1\)
\(\Leftrightarrow\left(n-1\right)\left(n+1\right)+4⋮n-1\)
\(\Leftrightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow n\in\left\{2;3;5;0;-1;-3\right\}\)
Học tốt!!!
\(\Leftrightarrow n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{2;0;4;-2\right\}\)
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
11,
a, 4x-3\(\vdots\) x-2 1
x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2
Từ 1 và 2 ta có:
(4x-3)-(4x-8)\(\vdots\) x-2
\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2
\(\Rightarrow\) 5 \(\vdots\) x-2
\(\Rightarrow\) x-2\(\in\) Ư(5)
\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}
\(\Rightarrow\) x\(\in\) {-3;1;3;7}
Vậy......
Phần b và c làm tương tự như phần a pn nhé!
3n+2 chia hết cho n-1
=> 3n-3+5 chia hết cho n-1
=> 3.(n-1)+5 chia hết cho n-1
Mà 3(n-1) chia hết cho n-1
=> 5 chia hết cho n-1
=> n-1 \(\in\)Ư(5)={-5; -1; 1; 5}
=> n \(\in\){-4; 0; 2; 6}
n2+2n-7 chia hết cho n+2
=> n.(n+2)-7 chia hết cho n+2
=> 7 chia hết cho n+2
=> n+2 E Ư(7)={-7; -1; 1; 7}
=> n E {-9; -3; -1; 5}
Ta có: \(\left(n+3\right)⋮n^2-7\)
\(\Leftrightarrow\left(n+3\right)\left(n-3\right)⋮n^2-7\)
\(\Leftrightarrow n^2-9⋮n^2-7\)
\(\Leftrightarrow n^2-7-2⋮n^2-7\)
mà \(n^2-7⋮n^2-7\)
nên \(-2⋮n^2-7\)
\(\Leftrightarrow n^2-7\inƯ\left(-2\right)\)
\(\Leftrightarrow n^2-7\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow n^2\in\left\{8;6;9;5\right\}\)
\(\Leftrightarrow n\in\left\{2\sqrt{2};-2\sqrt{2};\sqrt{6};-\sqrt{6};3;-3;\sqrt{5};-\sqrt{5}\right\}\)
mà \(n\in Z\)
nên \(n\in\left\{3;-3\right\}\)
Vậy: Để \(\left(n+3\right)⋮n^2-7\) thì \(n\in\left\{3;-3\right\}\)