K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2021

2n+1 /n+2 là số nguyên thì 2n+1 phải là bội của n+2

2n+1 chia hết cho n+2

mà 2n+1=2(n+2)-4+1

              =2(n+2)-3

vậy 3 chia hết cho n+2

vậy n thuộc (-3;-1;-5;1)

16 tháng 2 2021

Ta có: \(\frac{2n+1}{n+2}=\frac{2n+4}{n+2}-\frac{3}{n+2}=2-\frac{3}{n+2}\)

Để \(\frac{2n+1}{n+2}\inℤ\)\(\Rightarrow\)\(2-\frac{3}{n+2}\inℤ\)mà \(2\inℤ\)

\(\Rightarrow\)\(3⋮n+2\)\(\Rightarrow\)\(n+2\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)\(n\in\left\{-1;-3;-5;2\right\}\)( Các giá trị đều thoả mãn )

Vậy.........

26 tháng 4 2017

\(\frac{2n-1}{3n-4}\)

=\(\frac{\left(5-3\right)n-\left(5-4\right)n}{3n-4}\)

\(\frac{5-3n-5n-4}{3n-4}\)

=\(\frac{5}{3n-4}-\frac{3n-4}{3n-4}\)

\(\Rightarrow\)3n - 4  thuộc Ư(5)

Ta có: Ư(5) = { -1;-5;1;5}

Do đó:

3n - 4 = -1

3n      = -1 + 4

3n      = 3

n        = 3 : 3

n        = 1

3n - 4 = -5

3n      = -5 + 4

3n      = -1

n        = -1 : 3

n        = rỗng

3n - 4 = 1

3n      = 1 + 4

3n      = 5

n        = 5 : 3

n        = rỗng

3n - 4 = 5

3n      = 5 + 4

3n      = 9

n        = 9 : 3

n        = 3

Vậy n = 1;3

26 tháng 4 2017

Để \(\frac{2n-1}{3n-4}\)nguyên thì \(2n-1⋮3n-4\)

\(\Leftrightarrow3\left(2n-1\right)⋮3n-4\)

\(\Leftrightarrow6n-3⋮3n-4\)

\(\Leftrightarrow6n-8+5⋮3n-4\)

\(\Leftrightarrow5⋮3n-4\)

\(\Rightarrow3n-4\inƯ\left(5\right)\)

Vậy ta có bảng sau:

3n - 41-15-5
nx13x
4 tháng 3 2017

có số { 0;1 }

k mk nha ♥

Vì 7/2n-1 có giá trị là số nguyên 

=> 7 chia hết cho 2n-1

=> 2n-1 thuộc ước của 7 

Ư(7)={1;-1;7;-7}

Ta có bảng :

2n-1     1     -1    7      -7

2n        2     0     8      -6

n          1     0     4      -3

Vậy với n thuộc {-3;0;1;4} thì thỏa mãn đầu bài 

a: Để A là phân số thì n-2<>0

=>n<>2

Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)

b: Để A nguyên thì 2n+1 chia hết cho n-2

=>2n-4+5 chia hết cho n-2

=>\(n-2\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{3;1;7;-3\right\}\)

26 tháng 4 2020

\(A=\frac{n^2-2n-22}{n+3}\)

\(=\frac{\left(n^2-2n-15\right)-7}{n+3}\)

\(=\frac{\left(n+3\right)\left(n-5\right)-7}{n+3}\)

\(=n-3-\frac{7}{n+3}\)

Để A nguyên thì \(\frac{7}{n+3}\) nguyên

Tới đây bạn tự xét ước

31 tháng 5 2018

Bài 1: 

a) ta có: \(A=\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2.\left(n-3\right)+5}{n-3}=\frac{2.\left(n-3\right)}{n-3}+\frac{5}{n-3}\)\(=2+\frac{5}{n-3}\)

Để A có giá trị nguyên

\(\Rightarrow\frac{5}{n-3}\in z\)

\(\Rightarrow5⋮n-3\Rightarrow n-3\inƯ_{\left(5\right)}=\left(5;-5;1;-1\right)\)

nếu n-3 = 5 => n = 8 (TM)

n-3 = -5 => n= -2 (TM)

n-3 = 1 => n = 4 (TM)

n-3 = -1 => n = 2 (TM)

KL: \(n\in\left(8;-2;4;2\right)\)

b) ta có: \(A=2+\frac{5}{n-3}\) ( pa)

Để A đạt giá trị lớn nhất

=>  \(\frac{5}{n-3}\le5\)

Dấu "=" xảy ra khi

\(\frac{5}{n-3}=5\)

\(\Rightarrow n-3=5:5\)

\(n-3=1\)

\(n=4\)

KL: n =4 để A đạt giá trị lớn nhất

Bài 2 bn làm tương tự nha!

8 tháng 7 2016

a) A \(=\frac{2n-1}{n-3}=\frac{2n-6}{n-3}+\frac{5}{n-3}\) nguyên

<=> n - 3 thuộc Ư(5) = {-5; -1; 1; 5}

<=> n thuộc {-2; 2; 4; 8}

b) A lớn nhất <=> \(\frac{5}{n-3}\) lớn nhất <=> n - 3 là số nguyên dương nhỏ nhất

<=> n - 3 = 1 <=> n = 4