Tập nghiệm của bất pt
a) \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
b) Gọi S là nghiệm của bất pt \(\dfrac{x^2+x+3}{x^2-4}\ge1\). Khi đó \(S\cap\left(-2;2\right)\) là tập nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x^2+x+3}{x^2-4}\ge1\Leftrightarrow\dfrac{x^2+x+3}{x^2-4}-1\ge0\)
\(\Leftrightarrow\dfrac{x+7}{x^2-4}\ge0\Rightarrow\left[{}\begin{matrix}-7\le x< -2\\x>2\end{matrix}\right.\)
\(\Rightarrow S\cap\left(-2;2\right)=\varnothing\)
a, \(\left|3x+1\right|>2\)
\(\Leftrightarrow\left(\left|3x+1\right|\right)^2>4\)
\(\Leftrightarrow9x^2+6x+1>4\)
\(\Leftrightarrow9x^2+6x-3>0\)
\(\Leftrightarrow3\left(3x-1\right)\left(x+1\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{3}\\x< -1\end{matrix}\right.\)
b, \(\left|2x-1\right|\le1\)
\(\Leftrightarrow\left(\left|2x-1\right|\right)^2\le1\)
\(\Leftrightarrow4x^2-4x+1\le1\)
\(\Leftrightarrow4x\left(x-1\right)\le0\)
\(\Leftrightarrow0\le x\le1\)
c, ĐK: \(x\ne13\)
\(\left|\dfrac{2}{x-13}\right|>\dfrac{8}{9}\)
\(\Leftrightarrow\dfrac{1}{\left|x-13\right|}>\dfrac{4}{9}\)
\(\Leftrightarrow4\left|x-13\right|< 9\)
\(\Leftrightarrow16\left(x^2-26x+169\right)< 81\)
\(\Leftrightarrow16x^2-416x+2623< 0\)
\(\Leftrightarrow\dfrac{43}{4}< x< \dfrac{61}{4}\)
\(\Rightarrow\) Có hai giả trị thỏa mãn yêu cầu bài toán
a, \(\left|x+2\right|+\left|-2x+1\right|\le x+1\left(1\right)\)
TH1: \(x\le-2\)
\(\Rightarrow x+1\le-1< \left|x+2\right|+\left|-2x+1\right|\)
\(\Rightarrow\) vô nghiệm
TH2: \(-2< x\le\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow x+2-2x+1\le x+1\)
\(\Leftrightarrow x\ge1\)
\(\Rightarrow x\in\left[1;\dfrac{1}{2}\right]\)
TH3: \(x>\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow x+2+2x-1\le x+1\)
\(\Leftrightarrow x\le0\)
\(\Rightarrow\) vô nghiệm
Vậy \(x\in\left[1;\dfrac{1}{2}\right]\)
b, \(\left|x+2\right|-\left|x-1\right|< x-\dfrac{3}{2}\left(2\right)\)
TH1: \(x\le-2\)
\(\left(2\right)\Leftrightarrow-x-2+x-1< x-\dfrac{3}{2}\)
\(\Leftrightarrow x>-\dfrac{3}{2}\)
\(\Rightarrow\) vô nghiệm
TH2: \(-2< x\le1\)
\(\left(2\right)\Leftrightarrow x+2+x-1< x-\dfrac{3}{2}\)
\(\Leftrightarrow x< -\dfrac{5}{2}\)
\(\Rightarrow\) vô nghiệm
TH3: \(x>1\)
\(\left(2\right)\Leftrightarrow x+2-x+1< x-\dfrac{3}{2}\)
\(\Leftrightarrow x>\dfrac{9}{2}\)
\(\Rightarrow x\in\left(\dfrac{9}{2};+\infty\right)\)
Vậy \(x\in\left(\dfrac{9}{2};+\infty\right)\)
a) \(2x-\dfrac{x-3}{5}-4x+1\le0\)
\(\Leftrightarrow10x-x+3-20x+5\le0\)
\(\Leftrightarrow-11x+8\le0\)
\(\Leftrightarrow x\ge\dfrac{8}{11}\)
\(\Rightarrow x\in\left(\dfrac{8}{11};+\infty\right)\)
b) \(\sqrt{x^2+2}\le x-1\)
\(\Leftrightarrow x^2+2\le x^2-2x+1\) \(\left(x-1\ge\sqrt{x^2+2}\ge\sqrt{2}\Rightarrow x\ge1+\sqrt{2}\right)\)
\(\Leftrightarrow x\le-\dfrac{1}{2}\)
\(\Rightarrow x\in\varnothing\)
c) \(\sqrt{x-1}+\sqrt{5-x}+\dfrac{1}{x-3}>\dfrac{1}{x-3}\) (\(x\in\left[1;5\right]\backslash\left\{3\right\}\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{5-x}>0\)
\(\Leftrightarrow4+2\sqrt{\left(x-1\right)\left(5-x\right)}>0\) ( luôn đúng )
vậy \(x\in\left[1;5\right]\backslash\left\{3\right\}\)
a, ĐK: \(x=2017\)
\(\sqrt{x-2017}>\sqrt{2017-x}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2017-x\ge0\\x-2017>2017-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2017\\x>2017\end{matrix}\right.\)
\(\Rightarrow S=\varnothing\)
Tập nghiệm của bất pt \(\log_{\dfrac{1}{2}}\left(x+1\right)-log_{\dfrac{1}{2}}\left(2x-1\right)< 2\)
ĐKXĐ: \(x>\dfrac{1}{2}\)
\(log_{\dfrac{1}{2}}\left(\dfrac{x+1}{2x-1}\right)< 2\)
\(\Rightarrow\dfrac{x+1}{2x-1}>\dfrac{1}{4}\)
\(\Rightarrow x>-\dfrac{5}{2}\)
Kết hợp ĐKXĐ: \(\Rightarrow x>\dfrac{1}{2}\)
a, \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
⇔ \(\dfrac{\left(x-2\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+2\right)}\ge0\)
⇔ \(\dfrac{3-6x}{\left(x+1\right)\left(x-2\right)}\) ≥ 0
⇔ \(\dfrac{2x-1}{\left(x+1\right)\left(x-2\right)}\) ≤ 0
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\-1< x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}\le x< 2\\x< -1\end{matrix}\right.\)
Vậy tập nghiệm là \(\left(-\infty;-1\right)\cup\) \(\left[\dfrac{1}{2};2\right]\)\ {2}
Bạn có thể biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn
Còn vì sao mình không biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn thì đó là một câu chuyện dài
b, tương tự, chuyển vế đổi dấu