Cho ∆ABC cân tại A (góc A nhọn, AB > BC). Gọi M là trung điểmcủa BC.a) Chứng minh: ∆AMB = ∆AMC.b) Qua M kẻ đường thẳng song song với AB, cắt cạnh AC tại E.Chứng minh: E là trung điểm của AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔADC có
AD chung
DB=DC
AB=AC
=>ΔABD=ΔACD
b: Xét ΔEAK và ΔEBD có
góc EAK=góc EBD
EA=EB
góc AEK=góc BED
=>ΔEAK=ΔEBD
=>AK=BD=CD
c: AK//CD và AK=CD
=>AKDC là hbh
=>KD//AC và AD cắt KC tại trung điểm của mỗi đường
=>F là trung điểm chung của AD và KC
Xét ΔABD có AE/AB=AF/AD
nên EF//BD
=>EF vuông góc AD
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
b: Xét ΔADM vuông tại D và ΔAEM vuông tại E có
AM chung
góc DAM=góc EAM
=>ΔADM=ΔAEM
=>MD=ME
=>ΔMED cân tại M
c: Xét ΔCAB có
M là trung điểm của CB
MF//AB
=>F là trung điểm của AC
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔABM=ΔACM
b: góc NMC=góc ABC
=>góc NMC=góc NCM
=>ΔNMC cân tại N
c: Xét ΔCAB có
M là trung điểm của CB
MN//AB
=>N là trung điểm của AC
a. Xét ΔAMB và ΔAMC có
AM chung
MB=MC ( do M là trung điểm BC )
AB=AC
⇒ ΔAMB = ΔAMC (ccc)
b. Xét ΔABC có AB=AC
⇒ ΔABC cân AMà M là trung điểm BC
⇒AM là đường trung tuyến
⇒ AM đồng thời là đường phân giác
⇒ ∠BAM=∠CAM
Mà ME//AC ⇒ ∠EMA=∠CAM ( so le trong )
⇒∠BAM=∠EMA
c. Do ΔABC cân A và AE=AF
⇒EB=FC và ∠EBM=∠FCM
Xét ΔEBM và ΔFCM có
BM=MC
EB=FC
∠EBM=∠FCM
⇒ ΔEBM = ΔFCM (cgc)
a) Xét ΔAMB và ΔAMC có
AB=AC(ΔABC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
b) Xét ΔABC có
M là trung điểm của BC(gt)
ME//AB(gt)
Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
bạn giúp mk với ạ!!