a,Tìm số tự nhiên m,n sao cho m2+n2=m+n+8
b,Tìm GTLN,GTNN của A=\(\frac{4x+3}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(c,\text{PT có 2 }n_0\text{ phân biệt }\Leftrightarrow\Delta'=2^2-2m>0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)
Áp dụng bdtd quen thuộc :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Chứng minh bđt nha ( quên mất )
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)
Nhân từng vế của 2 bđt ta được đpcm
Dấu "=" khi \(a=b=c\)
Ta có: M=−x2−2x+5
=−(x2+2x−5)
=−(x2+2x+1)+6
=−(x+1)2+6
Vì −(x+1)2≤0∀x
⇒−(x+1)2+6≤6∀x
Dấu "=" xảy ra ⇔
Vậy
Đặt A=4x−x2+3
=−x2+4x+3=−(x2−4x−3)
=−(x2−4x+4−7)
=−[(x−2)2−7]
=−(x−2)2+7
Ta có: −(x−2)2≤0⇒−(x−2)2+7≤7
Dấu " = " khi (x−2)2=0⇔x=2
Vậy MAXA=7 khi x = 2
a, N = 2 + 6/x^2-8x+22
Có : x^2-8x+22 = (x-4)^2 + 6 >= 6 => 6/x^2-8x+22 <= 6/6 = 1 => N <= 2+1=3
Dấu "=" xảy ra <=> x-4 = 0 <=> x=4
Vậy Max N =3 <=> x=4
k mk nha
Cảm ơn bạn đã giúp mink nhưng bạn làm kiểu thế mink ko hiểu. Mong bạn sửa lại !
\(M=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4-x^2+2x-1}{x^2+2}=\frac{2\left(x^2+2\right)-\left(x-1\right)^2}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)
\(N=\frac{4x}{x^2+2}=\frac{-\sqrt{2}x^2-2\sqrt{2}+\sqrt{2}x^2+4x+2\sqrt{2}}{x^2+2}\)
\(=\frac{-\sqrt{2}\left(x^2+2\right)+\sqrt{2}\left(x^2+2\sqrt{2}x+2\right)}{x^2+2}=-\sqrt{2}+\frac{\sqrt{2}\left(x+\sqrt{2}\right)^2}{x^2+2}\ge-\sqrt{2}\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Em yêu anh