Cho \(\Delta\) ABC, có N là trung điểm của AB. Trên tia đối của tia NC lấy điểm D sao cho ND=NC.
a) Chứng minh rằng: \(\Delta ACN=\Delta BDN.\)
b) Chứng minh: AD//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta DNA\) và \(\Delta BCN\), có:
DN = NB (gt)
góc N1 = N2 (2 góc đối đỉnh)
AN = CN (N là TĐ của AC)
->\(\Delta DNA=\Delta BCN\) (c.g.c)
-> AD = BC (2 cạnh tương ứng)
-> góc A1 = góc ACB ( 2 góc tương ứng)
Mà góc A1 và góc ACB là 2 góc SLT
-> AD//BC
Mình chỉ làm được ý a thôi hihi thông cảm
a: Xét tứ giác ABCD có
N là trung điểm của đường chéo AC
N là trung điểm của đường chéo BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
b: Ta có: ABCD là hình bình hành
nên AD//BC
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
Bạn tự vẽ hình nhé
a)
Áp dụng định lý Py-ta-go vào \(\Delta ABC:\)
\(BC^2=AB^2+AC^2\\ \Rightarrow BC^2=8^2+6^2\\ \Rightarrow BC^2=64+36\\ \Rightarrow BC^2=100\\ \Rightarrow BC=10\left(cm\right)\)
b)
Xét \(\Delta BGC\) và \(\Delta DGC\) có:
\(AB=AD\left(GT\right)\\ AG:chung\\ \widehat{BAC}=\widehat{DAC}\left(=90^o\right)\)
\(\Rightarrow\Delta BGC=\Delta DGC\left(c-g-c\right)\)
c)
Xét \(\Delta BCD\) có:
\(AB=AD\left(GT\right)\\ \dfrac{AG}{DG}=\dfrac{2}{6}=\dfrac{1}{3}\Rightarrow\dfrac{CG}{AC}=1-\dfrac{1}{3}=\dfrac{2}{3}\)
=> G là trọng tâm của \(\Delta BCD\)
=> DG là đường trung tuyến của \(\Delta BCD\) ứng với cạnh BC
Hay DG đi qua trung điểm BC
\(\left(a\right).Xét\Delta ACNvà\Delta BDN:\)
\(AN=BN\left(gt\right)\)
\(\widehat{ANC}=\widehat{BND}\left(đđ\right)\)
\(NC=ND\left(gt\right)\)
\(\Rightarrow\Delta ACN=\Delta BDN\left(c.g.c\right)\)
\(\left(b\right).\)
\(TC:\)
\(NA=NB\left(gt\right)\)
\(ND=NC\left(gt\right)\)
\(\Rightarrow DACBlàhìnhbìnhhành\)
\(\Rightarrow AD//BC\)
a) Xét △BND và △ANC có :
NA=NB (N là trung điểm đoạn AB )
NC=ND (GT)
Góc DNB = Góc ANC
=> △BND = △ANC