Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
H là trung điểm của AD
H là trung điểm của BC
Do đó: ABDC là hình bình hành
mà AB=AC
nên ABDC là hình thoi
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: Xét ΔADE có
M là trung điểm của AD
H là trung điểm của AE
Do đó: MH là đường trung bình của ΔADE
Suy ra: MH//DE
hay BC//DE
Xét ΔCAE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAE cân tại C
Suy ra: CA=CE
mà CA=BD
nên CE=BD
Xét tứ giác BCDE có DE//BC
nên BCDE là hình thang
mà CE=BD
nên BCDE là hình thang cân
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a) Tứ giác \(AMDN\) có \(\widehat{A}=\widehat{M}=\widehat{N}=90^0\)
nên \(AMDN\) là hình chữ nhật
b) MK SỬA LẠI ĐỀ NHA: CM AEBD LÀ HÌNH THOI
\(\Delta ABC\)có \(DB=DC;\)\(DM\)// \(AC\)( cùng \(\perp AB\))
\(\Rightarrow\)\(MA=MB\)
Tứ giác \(AEBD\)có \(MA=MB;\)\(ME=MD\)
nên \(AEBD\)là hình bình hành
mà \(AB\perp ED\)
nên \(AEBD\)là hình thoi
a) Xét tứ giác ABDC có
H là trung điểm của đường chéo BC(AH là đường trung tuyến ứng với cạnh BC trong ΔABC)
H là trung điểm của đường chéo AD(A và D đối xứng nhau qua H)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABDC có AB=AC(ΔABC cân tại A)
nên ABDC là hình thoi(Dấu hiệu nhận biết hình thoi)
b) Ta có: ΔABC cân tại A(gt)
mà AH là đường trung tuyến ứng với cạnh đáy BC(gt)
nên AH là đường cao ứng với cạnh BC(Định lí tam giác cân)
\(\Leftrightarrow AH\perp BC\)
Ta có: AH\(\perp\)BC(cmt)
AH\(\perp\)AE(gt)
Do đó: BC//AE(Định lí 1 từ vuông góc tới song song)
hay HC//AE
Xét ΔAED có
H là trung điểm của AD(A và D đối xứng nhau qua H)
HC//AE(cmt)
Do đó: C là trung điểm của DE(Định lí 1 đường trung bình của tam giác)
Xét ΔAED có
H là trung điểm của AD(A và D đối xứng nhau qua H)
C là trung điểm của DE(cmt)
Do đó: HC là đường trung bình của ΔAED(Định nghĩa đường trung bình của tam giác)
\(\Leftrightarrow HC=\dfrac{AE}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà \(HC=\dfrac{BC}{2}\)(H là trung điểm của BC)
nên AE=BC
Xét tứ giác ABCE có
AE//BC(cmt)
AE=BC(cmt)
Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)