K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 2 2021

\(\hept{\begin{cases}x+4=3^a\\4x+7=3^b\end{cases}}\Rightarrow\left(4x+7\right)-\left(x+4\right)=3^b-3^a\)

\(\Leftrightarrow3x+3=3^b-3^a\)

\(\Leftrightarrow x+1=3^{b-1}-3^{a-1}\)

Thế vào \(x+4=3^a\)ta được: 

\(3^{b-1}-3^{a-1}+3=3^a\)

\(\Leftrightarrow3\left(3^{b-2}+1\right)=3^{a-1}\left(3+1\right)\)

\(\Leftrightarrow3\left(3^{b-2}+1\right)=3^{a-1}.4\)(*)

có \(3^{b-2}+1⋮̸3,\forall b\inℤ_+\)nên (*) tương đương với

\(\hept{\begin{cases}3=3^{a-1}\\3^{b-2}+1=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\)

Thử lại ta thấy thỏa mãn, suy ra \(x=5\).

2 tháng 9 2015

mình biết làm nhưng dài quá bạn tra trên google là đc

15 tháng 5 2017

a3 - b3 - c3 = 3abc

=> a > b ; b > c 

=> a + a > b + c

=> 2a > b + c

=> 4a > 2(b + c)

=> 4 > a

Mà a2 = 2(b + c)

=> a chia hết cho 2

=> a = 2

(Lập luận dựa vào các ý trên)

=> b = c = 1 

22 tháng 1 2019

a) \(xy-5x+y=17\)

\(\Leftrightarrow x\left(y-5\right)+y-5=12\)

\(\Leftrightarrow\left(x+1\right)\left(y-5\right)=12\)

\(\Leftrightarrow\left(x+1\right)\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Ta có bảng sau :

\(x+1\)\(-12\)\(-6\)\(-4\)\(-3\)\(-2\)\(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(12\)
\(x\)\(-13\)\(-7\)\(-5\)\(-4\)\(-3\)\(-2\)\(0\)\(1\)\(2\)\(3\)\(5\)\(11\)
22 tháng 1 2019

b) \(x\left(y-2\right)=3\)

\(\Leftrightarrow x\left(y-2\right)=3.1=-1.\left(-3\right)\)

*Trường hợp 1: \(x=3\)

\(\Leftrightarrow y-2=1\)

\(\Leftrightarrow y=1+2\)

\(\Leftrightarrow y=3\)

*Trường hợp 1: \(x=-1\)

\(\Leftrightarrow y-2=-3\)

\(\Leftrightarrow y=-3+2\)

\(\Leftrightarrow y=-2\)

\(\Rightarrow x=-1;y=-2\)