Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M,N là trung điểm SB,SC; lấy điểm P thuộc SA.
a. Tìm giao tuyến của (SAB) và (SCD)
b. Tìm giao điểm SD và (MNP)
c. Tìm thiết diện hình chóp và (MNP). Thiết diện là hình gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Dễ thấy M N | | A B nên mặt phẳng (CMN) cắt mặt phẳng (ABCD) theo giao tuyến là đường thẳng qua C và song song với AB.
Vậy giao tuyến của (MNC) và (ABD) là đường thẳng CD.
Nối AN kéo dài cắt CD tại E, nối EM kéo dài cắt SD tại I
Do N là trung điểm OB \(\Rightarrow\dfrac{BN}{ND}=\dfrac{1}{3}\)
Áp dụng định lý talet: \(\dfrac{BF}{AD}=\dfrac{BN}{ND}=\dfrac{1}{3}\) \(\Rightarrow\dfrac{CF}{AD}=\dfrac{2}{3}\)
Cũng theo Talet:
\(\dfrac{FC}{FD}=\dfrac{CF}{AD}=\dfrac{2}{3}\) \(\Rightarrow\dfrac{DF}{FC}=\dfrac{3}{2}\)
Áp dụng định lý Menelaus cho tam giác SCD:
\(\dfrac{IS}{ID}.\dfrac{DF}{FC}.\dfrac{CM}{MS}=1\Rightarrow\dfrac{IS}{ID}.\dfrac{3}{2}.1=1\Rightarrow\dfrac{IS}{ID}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{SI}{SD}=\dfrac{2}{5}\)