Bài 4. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia AM lấy
điểm N sao cho M là trung điểm của AN.
a) Chứng minh rằng: CN = AB và CN // AB;
b) Kẻ BE ⊥ AM tại E, CF ⊥ AM tại F. Chứng minh BE = CF.
c) Chứng minh BF // CE
d) Chứng minh rằng: BC = 2AM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCMN và ΔAMB có
MC=MA
\(\widehat{CMN}=\widehat{AMB}\)
MN=MB
Do đó: ΔCMN=ΔAMB
Suy ra: \(\widehat{MCN}=\widehat{MAB}\) và CN=AB
hay CN\(\perp\)AC
a) Xét tam giác BMA và tam giác CMN:
BM=MC ( M là trung điểm của BC)
\(\widehat{BMA=\widehat{CMN}}\)(2 góc đối đỉnh)
AM=MN ( M là trung điểm của AN)
=>Tam giác BMA=tam giác CMN(c-g-c)
=>\(\widehat{ABM}\)=\(\widehat{MCN}\)(2 góc tương ứng)
mà chúng nằm ở vị trí so le trong
=>BA//NC
b) CM cho AN=BC =>Am=\(\frac{1}{2}\)BC
Xét ΔAMB và ΔNMC có :
MA=MN ( gt)
\(\widehat{M_1}\)= \(\widehat{M_2}\)(2 góc đối đỉnh )
MB =MC (gt)
Suy ra: ΔAMB=ΔNMC(c.g.c)
⇒ CN = AB ( 2 cạnh tương ứng )
⇒ \(\widehat{NCM}=\widehat{ABM}\)( 2 góc tương ứng ) ⇒ CN // AB ( vì có cặp góc so le trong bằng nhau )
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét tứ giác ANMC có
I là trung điểm của AM
I là trung điểm của CN
Do đó: ANMC là hình bình hành
Suy ra: AN//MC
hay AN//BC
c: Xét tứ giác ABMK có
I là trung điểm của BK
I là trung điểm của AM
Do đó: ABMK là hình bình hành
Suy ra: AK//BM
hay AK//BC
mà AN//BC
và AN,AK có điểm chung là A
nên A,N,K thẳng hàng
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét tứ giác ANMC có
I là trung điểm của AM
I là trung điểm của NC
Do đó: ANMC là hình bình hành
Suy ra: AN//MC
hay AN//BC
hình vẽ đấy nhé
GIAI
a ) xét tam giác AMB và tam giác CMN có
AM = MC ( M là trung điểm của AC )
góc AMB = goc CMN ( đối đỉnh )
MB = MN ( M là trung điểm của BN )
=> tam giác AMB = tam giác CMN ( c.g.c)
=> AB = CN ( 2 cạnh tương ứng )
=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )
=> CN vuông góc với AC (dpcm )
b ) chúng minh tương tự
=> tam giác ANM = tam giác CBM ( c.g.c )
=> AN = BC ( 2 cạnh tương ứng )
=> góc ANM = góc CBM ( 2 góc tương ứng )
mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC
=> AN song song BC ( dpcm)