Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:A. Tam giác cân B. Tam giác đều C. Tam giác vuông D. Tam giác vuông cânCâu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:A. 7cm B. 12,5cm C. 5cm D. Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: A. Đỉnh A B. Đỉnh B C....
Đọc tiếp
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:
A. cm B. 3cm C. cm D. cm
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Câu 24. Cho tam giác MNP cân tại M, . Khi đó,
A. B. C. D.
Câu 25 : Cho ABC= MNP biết thì:
A. MNP vuông tại P B. MNP vuông tại M
C. MNP vuông tại N D. ABC vuông tại A
a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
BH chung
AH=DH(H là trung điểm của AD)
Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)
⇒AB=DB(hai cạnh tương ứng)(1)
Xét ΔAMB và ΔEMC có
AM=EM(M là trung điểm của AE)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔEMC(c-g-c)
⇒AB=EC(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra BD=CE(đpcm)
b) Ta có: ΔABH=ΔDBH(cmt)
nên \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)
hay \(\widehat{ABC}=\widehat{DBC}\)
mà tia BC nằm giữa hai tia BA,BD
nên BC là tia phân giác của \(\widehat{ABD}\)(đpcm)
c) Xét ΔACH vuông tại H và ΔDCH vuông tại H có
CH chung
AH=DH(H là trung điểm của AD)
Do đó: ΔACH=ΔDCH(hai cạnh góc vuông)
⇒CA=CD(hai cạnh tương ứng)
Ta có: BA=BD(cmt)
nên B nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: CA=CD(cmt)
nên C nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra BC là đường trung trực của AD(đpcm)
d) Xét ΔBME và ΔCMA có
BM=CM(M là trung điểm của BC)
\(\widehat{BME}=\widehat{CMA}\)(hai góc đối đỉnh)
ME=MA(M là trung điểm của AE)
Do đó: ΔBME=ΔCMA(c-g-c)
⇒BE=CA(hai cạnh tương ứng)
Xét ΔABC và ΔECB có
BC chung
AB=EC(cmt)
CA=BE(cmt)
Do đó: ΔABC=ΔECB(c-c-c)