K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2021

\(2^x+2^{x+1}+2^{x+2}=960-2^{x+3}\)

\(\Leftrightarrow2^x+2^{x+1}+2^{x+2}+2^{x+3}=960\)

\(\Leftrightarrow2^x\left(1+2+2^2+2^3\right)=960\)

\(\Leftrightarrow2^x.15=960\)

\(\Leftrightarrow2^x=64\)

\(\Leftrightarrow2^x=2^6\Leftrightarrow x=6\)

Vậy...

14 tháng 4 2023

\(2^x+2^{x+1}+2^{x+2}=960-2^{x+3}\\ \Leftrightarrow2^x+2^{x+1}+2^{x+2}+2^{x+3}=960\\ \Leftrightarrow2^x+2^x.2+2^x.2^2+2^x.2^3=960\\ \Leftrightarrow2^x\left(1+2+2^2+2^3\right)=960\\ \Leftrightarrow2^x.15=960\\ \Leftrightarrow2^x=64\\ \Leftrightarrow2^x=2^6\\ \Leftrightarrow x=6\)

Vậy \(x=6\)

3 tháng 7 2021

\(\)đặt \(2x^2+y^2+\dfrac{28}{x}+\dfrac{1}{y}=A\)

\(=>A=2x^2+y^2-7x-y+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)

\(A=2x^2-8x+8+y^2-2y+1+x+y-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)

\(A=2\left(x-2\right)^2+\left(y-1\right)^2+\left(x+y\right)-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)

áp dụng BDT AM-GM\(=>\dfrac{28}{x}+7x+\dfrac{1}{y}+y\ge2\sqrt{28.7}+2\sqrt{1}=30\)

\(=>A\ge30+3-9=24\)

dấu"=" xảy ra<=>x=2,y=1

 

31 tháng 10 2021

\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)

\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=-1\end{matrix}\right.\)

2 tháng 4 2022

:))

2 tháng 4 2022

đợi đê

2 tháng 4 2022

TK

Phương pháp giải:

-        Đa thức f(x) có nghiệm là  –2 nên f(–2) = 0, từ đó ta tìm được c.

-        Đa thức g(x) có nghiệm là  x1=1;x2=2x1=1;x2=2 nên g(1) = 0; g(2) = 0, từ đó ta tìm được a, b.

-        Giải h(x) = 0 để tìm nghiệm của h(x).

2 tháng 4 2022

f(x)=0 \(\Leftrightarrow\) 2x+a2-3=0 \(\Rightarrow\) x=\(\dfrac{3-a^2}{2}\).

a) x=1 \(\Leftrightarrow\) \(\dfrac{3-a^2}{2}\)=1 \(\Rightarrow\) a=\(\pm\)1.

b) x=\(\dfrac{-1}{2}\) \(\Leftrightarrow\) \(\dfrac{3-a^2}{2}\)=\(\dfrac{-1}{2}\) \(\Rightarrow\) a=\(\pm\)2.

20 tháng 3 2022

a,ĐKXĐ:\(\left\{{}\begin{matrix}x\ne\pm1\\x\ne\dfrac{1}{2}\end{matrix}\right.\)

\(A=\left(\dfrac{2}{x+1}-\dfrac{1}{x-1}+\dfrac{5}{x^2-1}\right):\dfrac{2x+1}{x^2-1}\\ =\left(\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{5}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{2x-2-x-1+5}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{x+2}{2x+1}\)

\(b,A=3\\ \Leftrightarrow\dfrac{x+2}{2x+1}=3\\ \Leftrightarrow6x+3=x+2\\ \Leftrightarrow5x+1=0\\ \Leftrightarrow x=-\dfrac{1}{5}\left(tm\right)\)

\(c,\dfrac{1}{A}=\dfrac{2x+1}{x+2}=\dfrac{2x+4-3}{x+2}=\dfrac{2\left(x+2\right)-3}{x+2}=2-\dfrac{3}{x+2}\)

Để `1/A` là số nguyên thì `3/(x+2)` nguyên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Ta có bảng:

x+2-3-113
x-5-3-1(ktm)1(ktm)

Vậy \(x\in\left\{-5;-3\right\}\)

NV
20 tháng 7 2021

Ta có:

\(3-S=\left(x^2+4y^2+9z^2\right)-\left(2x+4y+6z\right)\)

\(\Rightarrow3-S=\left(x^2-2x+1\right)+\left(4y^2-4y+1\right)+\left(9z^2-6z+1\right)-3\)

\(\Rightarrow6-S=\left(x-1\right)^2+\left(2y-1\right)^2+\left(3z-1\right)^2\ge0\)

\(\Rightarrow S\le6\)

\(S_{max}=6\) khi \(\left\{{}\begin{matrix}x-1=0\\2y-1=0\\3z-1=0\end{matrix}\right.\) \(\Leftrightarrow\left(x;y;z\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)