K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

Đặt \(z=-\frac{1+xy}{x+y}\)ta có \(xy+yz+zx=-1\)và bất đẳng thức đã cho trở thành:

\(x^2+y^2+z^2\ge2\Leftrightarrow x^2+y^2+z^2\ge-2\left(xy+yz+zx\right)\)\(\Leftrightarrow\left(x+y+z\right)^2\ge0\)( luôn đúng )

Vậy bất đẳng thức đã được chứng minh.

Mình giải thế này có đúng ko?

9 tháng 2 2016

tich cho minh nha

26 tháng 7 2016

Đặt \(z=-\frac{1+xy}{x+y}\) ta có \(xy+yz+zx=-1\) và BĐT trở thành

\(x^2+y^2+z^2\ge2\Leftrightarrow x^2+y^2+z^2\ge-2\left(xy+yz+zx\right)\Leftrightarrow\left(x+y+z\right)^2\ge0\) ( luôn đúng )

Vậy BĐT được chứng minh.

26 tháng 7 2016

- Sai thì nói mình nhé =)

11 tháng 3 2018

thằng ngu lê anh tú ko biết gì thì im vào

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)\(\Rightarrow x^2+y^2=S^2-2P\)

Ta cần chứng minh \(S^2-2P+\left(\frac{P+1}{S}\right)^2\ge2\)

\(\Leftrightarrow S^2-2\left(P+1\right)+\left(\frac{P+1}{S}\right)^2\ge0\)

\(\Leftrightarrow S^2-\frac{2S\left(P+1\right)}{S}+\left(\frac{P+1}{S}\right)^2\ge0\)

\(\Leftrightarrow\left(S-\frac{P+1}{S}\right)^2\ge0\) *luôn đúng*

10 tháng 3 2018

Đề sai. a=0;b=0,1 ko đúng, sửa lại đề đi bn

22 tháng 4 2018

\(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+\left(\frac{1+xy}{x+y}\right)^2\ge2\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(xy+1\right)+\left(\frac{1+xy}{x+y}\right)^2\ge0\)

\(\Leftrightarrow\left(x+y\right)^2-\frac{2\left(x+y\right)\left(xy+1\right)}{\left(x+y\right)}+\left(\frac{1+xy}{x+y}\right)^2\ge0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2\ge0\) (đúng)

Vậy ...

14 tháng 3 2018

Theo Cauche ta có:

\(\left(x+y\right)^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\left(x+y\right).\frac{1+xy}{x+y}=2\left(1+xy\right)=2+2xy\)

<=> \(x^2+y^2+2xy+\left(\frac{1+xy}{x+y}\right)^2\ge2+2xy\)

<=> \(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2+2xy-2xy=2\)=> ĐPCM

NV
29 tháng 4 2020

\(VT=x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2=\left(x+y\right)^2+\left(\frac{1+xy}{x+y}\right)^2-2xy\)

\(VT\ge2\sqrt{\frac{\left(x+y\right)^2\left(1+xy\right)^2}{\left(x+y\right)^2}}-2xy=2\left|1+xy\right|-2xy\)

\(VT\ge2\left(1+xy\right)-2xy=2\) (đpcm)

Dấu "=" xảy ra khi \(\left(x+y\right)^2=1+xy\)

NV
4 tháng 4 2019

1/

\(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\)

\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x=2y\) (do \(x+y\ne0\))

\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

2/

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x-30\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-30=0\\x^2-x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)\left(x+6\right)=0\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)

NV
4 tháng 4 2019

\(x+y=1\Rightarrow\left\{{}\begin{matrix}y-1=-x\\x-1=-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(y-1\right)^2=x^2\\\left(x-1\right)^2=y^2\end{matrix}\right.\)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{-1}{x^2+3y}+\frac{1}{y^2+3x}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-y^2-3x+x^2+3y}{\left(xy\right)^2+3x^3+3y^3+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{\left(x-y\right)\left(x+y\right)-3x+3y}{\left(xy\right)^2+3\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-2\left(x-y\right)}{\left(xy\right)^2+3}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=0\)

19 tháng 5 2017

1/ Sửa đề:   \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\)   \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)

\(\Leftrightarrow\)   \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

Với mọi x, y, z ta luôn có:   \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\)   \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\)   \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)

\(\Rightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Do đó dấu "=" xảy ra    \(\Leftrightarrow\)    \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\)   \(\Leftrightarrow\)    \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)    \(\Leftrightarrow\)    x = y = z

3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh

\(a+b\ge2\sqrt{ab}\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\)   \(a^2+b^2+2ab-4ab\ge0\)    \(\Leftrightarrow\)    \(a^2-2ab+b^2\ge0\)   \(\Leftrightarrow\)   \(\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi a = b

2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:

\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\)   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

16 tháng 5 2017

\(Vt=\left(x-y\right)^2+\frac{\left(1-xy\right)}{\left(x-y\right)^2}^2+2xy\ge2\left(1-xy\right)+2xy=2\)(AM-GM)