K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2023

\(đk:a;b\ne\dfrac{5}{3}\)

\(\dfrac{3b-28}{3a-5}-\dfrac{38-3a}{5-3b}=\dfrac{3b-28}{3\left(11+b\right)-5}-\dfrac{38-3\left(11+b\right)}{5-3b}=1-1=0\)

4 tháng 2 2023

làm như nào để ra 11 + b ạ?

5 tháng 6 2015

a = b + 11. Thay vào A ta được

\(A=\frac{3b+28}{3\left(b+11\right)-5}-\frac{38-3\left(b+11\right)}{5-3b}=\frac{3b+28}{3b+33-5}-\frac{38-3b-33}{5-3b}\)

\(=\frac{3b+28}{3b+28}-\frac{5-3b}{5-3b}=1-1=0\)

21 tháng 2 2022

a = b + 11. Thay vào A ta được

A=3b+283(b+11)−5−38−3(b+11)5−3b=3b+283b+33−5−38−3b−335−3b

8 tháng 4 2022

`Answer:`

a. Ta có: \(\frac{a}{b}=\frac{1}{3}\Rightarrow\frac{a}{1}=\frac{b}{3}\)

Đặt \(k=\frac{a}{1}=\frac{b}{3}\Rightarrow\hept{\begin{cases}a=k\\b=3k\end{cases}}\)

\(E=\frac{3a+2b}{4a-3b}\)

\(=\frac{3k+2.3k}{4k-3.3k}\)

\(=\frac{3k+6k}{4k-9k}\)

\(=\frac{9k}{-5k}\)

\(=-\frac{9}{5}\)

b. Thay `a-b=5` vào biểu thức `F`, ta được:

\(F=\frac{3a-\left(a-b\right)}{2a+b}-\frac{4b+\left(a-b\right)}{a+3b}\)

\(=\frac{3a-a+b}{2a+b}-\frac{4b+a-b}{a+3b}\)

\(=\frac{2a+b}{2a+b}-\frac{3b+a}{a+3b}\)

\(=1+1\)

\(=0\)

24 tháng 4 2023

1.

a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)

  -3a . \(\left(\dfrac{-1}{3}\right)\) <  -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )

         a < b

b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)

   4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )

        a < b

2. 

a. Ta có: a < b 

3a < 3b ( nhân cả 2 vế cho 3)

3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )

b. Ta có: a < b

-2a > -2b (nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)

c. Ta có: a < b 

2a < 2b (nhân cả vế cho 2)

2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)

d. Ta có: a < b

3a < 3b (nhân cả 2 vế cho 3)

3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)

Ta có: 3 < 4

đến đây ko bắt cầu qua đc chắc đề bài sai

 

 

 

21 tháng 10 2019

3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

\(\dfrac{a}{b}=\dfrac{1}{3}\)

nên b=3a

\(E=\dfrac{3a+2b}{4a-3b}=\dfrac{3a+6a}{4a-9a}=\dfrac{9}{-5}=-\dfrac{9}{5}\)

a-b=5 nên a=b+5

\(F=\dfrac{3\left(b+5\right)-5}{2\left(b+5\right)+b}-\dfrac{4b+5}{b+5+3b}\)

\(=\dfrac{3b+10}{3b+10}-1=1-1=0\)

13 tháng 10 2021

Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)