Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a + b > c ; b + c > a ; a + c > b
\(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{a+b+c}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)
Vậy ...
Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{a}{b}\), ta có:
\(1+\dfrac{a}{b}\ge2\sqrt{\dfrac{a}{b}}\) (1)
Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{b}{c}\), ta có:
\(1+\dfrac{b}{c}\ge2\sqrt{\dfrac{b}{c}}\) (2)
Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{c}{a}\), ta có:
\(1+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{a}}\) (3)
Từ (1), (2) và (3)
\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge2\sqrt{\dfrac{a}{b}}.2\sqrt{\dfrac{b}{c}}.2\sqrt{\dfrac{c}{a}}\)\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge8\) (vì \(\sqrt{\dfrac{a}{b}}.\sqrt{\dfrac{b}{c}}.\sqrt{\dfrac{c}{a}}=1\))
Dấu "=" xảy ra khi a = b = c. Khi đó tam giác đã cho là tam giác đều
\(VT=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\)
\(VT\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
\(\Rightarrow\) Tam giác là tam giác đều
Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c
=> p - a = (a + b + c)/2 - a
=> p - a = (b + c + a - 2a)/2
=> p - a = (b + c - a)/2
=> 2(p - a) = b + c - a (1)
Tương tự ta chứng minh được:
2(p - b) = a + c - b (2)
2(p - c) = a + b - c (3)
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b)
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ]
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ]
Bây giờ ta đã đưa bài toán về chứng minh
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Ta có: (x - y)² ≥ 0
<=> x² - 2xy + y² ≥ 0
<=> x² - 2xy + y² + 4xy ≥ 4xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
=> với x + y ≠ 0 và xy ≠ 0
=> (x + y)²/(x+ y) ≥ 4xy/(x + y)
=> (x + y) ≥ 4xy/(x + y)
=> (x + y)/xy ≥ (4xy)/[xy(x + y)]
=> 1/x + 1/y ≥ 4/(x + y) (*)
Áp dụng (*) với x = p - a và y = p - b ta được:
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4)
Chứng minh tương tự ta được:
1/(p - a) + 1/(p - c) ≥ 4/b (5)
1/(p - b) + 1/(p - c) ≥ 4/a (6)
Cộng vế với vế của (4);(5) và (6) ta được:
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c)
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c)
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) )
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Dấu bằng xảy ra <=> a = b = c.
Ta có : a+b > c , b+c > a , c+a > b
Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)
Vậy ta có đpcm
Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)
Vì \(a,b,c\)là độ dài 3 cạnh của 1 tam giác
\(\Rightarrow\hept{\begin{cases}a+b>c;b+c>a;c+a>b\\a+b;b+c;c+a< a+b+c\end{cases}}\)
Ta có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{a+b+c}=\frac{2}{a+b+c}>\frac{2}{a+c+a+c}=\frac{2}{2\left(a+c\right)}=\frac{1}{a+c}\)
Chứng minh tương tự , ta được: \(\frac{1}{b+c}+\frac{1}{c+a}>\frac{1}{a+b}\)
\(\frac{1}{c+a}+\frac{1}{a+b}>\frac{1}{b+c}\)
\(\Rightarrowđpcm\)