K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2021

\(AC^2+BD^2=2\left(AB^2+AD^2\right)\)

\(\Leftrightarrow AB^2+AC^2=5BD^2\)

Áp dụng BĐT Cauchy:

\(cosBAD=\dfrac{AB^2+AD^2-BD^2}{2AB.AD}\ge\dfrac{4BD^2}{AB^2+AD^2}=\dfrac{4BD^2}{5BD^2}=\dfrac{4}{5}\)

\(\Rightarrow sinBAD=\sqrt{1-cos^2BAD}\le\sqrt{1-\dfrac{16}{25}}=\dfrac{3}{5}\)

\(\Rightarrow\dfrac{1}{sinBAD}\ge\dfrac{5}{3}\)

\(\Rightarrow cotBAD=\dfrac{cosBAD}{sinBAD}\ge\dfrac{4}{5}.\dfrac{5}{3}=\dfrac{4}{3}\)

17 tháng 4 2022

A.\(\dfrac{a\sqrt{6}}{3}\)

NV
17 tháng 4 2022

\(S_{\Delta ACD}=\dfrac{1}{2}AC.AD.sin\widehat{CAD}=\dfrac{a^2\sqrt{3}}{4}\)

\(V=\dfrac{AB.AC.AD}{6}.\sqrt{1+2cos90^0.cos60^0.cos120^0-cos^290^0-cos^260^0-cos^2120^0}=\dfrac{a^3\sqrt{2}}{12}\)

\(\Rightarrow d\left(B;\left(ACD\right)\right)=\dfrac{3V}{S}=\dfrac{a\sqrt{6}}{3}\)

17 tháng 5 2017

Lượng giác

Ta có :

\(\widehat{ABD}=\widehat{ADB}\)

\(\widehat{ABD}=\widehat{BDC}\)

\(\Rightarrow\widehat{BDC}=\widehat{ADB}\)

Suy ra \(\widehat{BAD}=\pi-2\widehat{BDC}\)

Từ đó ta có :

\(\tan\widehat{BAD}=-\tan2\widehat{BDC}=-\dfrac{2\tan\widehat{BDC}}{1-\tan^2\widehat{BDC}}=-\dfrac{2.\dfrac{3}{4}}{1-9\cdot16}=-\dfrac{3}{2}.\dfrac{16}{7}=-\dfrac{24}{7}\)\(\dfrac{\pi}{2}< \widehat{BAD}< \pi\) nên \(\cos\widehat{BAD}< 0\)
Do đó : \(\cos\widehat{BAD}=-\dfrac{1}{\sqrt{1+\tan^2\widehat{BAD}}}=-\dfrac{1}{\sqrt{1+\dfrac{576}{49}}}=-\dfrac{7}{25}\)

\(\sin\widehat{BAD}=\cos\widehat{BAD}\tan\widehat{BAD}=\dfrac{-7}{25}.\dfrac{-24}{7}=\dfrac{24}{25}\)