So Sánh : \(\dfrac{10^{11}-1}{10^{12}-1}\)và\(\dfrac{10^{10}+1}{10^{11}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$B=\frac{10^{11}+10}{10^{12}+10}$
Đặt $10^{11}-1=a; 10^{12}-1=b$ thì $0< a< b$. Khi đó:
$A-B=\frac{a}{b}-\frac{a+11}{b+11}=\frac{11(a-b)}{b(b+11)}<0$
$\Rightarrow A< B$
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
a)\(\dfrac{19}{10}>\dfrac{10}{11}\)
b)\(\dfrac{11}{10}=\dfrac{12}{11}\)
c)\(\dfrac{9}{10}< \dfrac{10}{11}\)
ta có: \(A=\dfrac{10.10^{10}-1}{10.10^{11}-1}=\dfrac{10^{10}-1}{10^{11}-1}\)
so sánh: \(A=\dfrac{10^{10}-1}{10^{11}-1}\)và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow A< B\)
\(A=\dfrac{2021^{10}-2021+2020}{2021^9-1}\\ =\dfrac{2021\left(2021^9-1\right)+2020}{2021^9-1}\\ =2021+\dfrac{2020}{2021^9-1}\\ B=\dfrac{2021^{11}-1}{2021^{10}-1}=2021+\dfrac{2020}{2021^{10}-1}\)
Ta có:
\(2021^9-1< 2021^{10}-1\\ \Rightarrow\dfrac{2020}{2021^9-1}>\dfrac{2020}{2021^{10}-1}\)
Do đó A > B.
Ta có: \(10C=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)
\(10D=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)
\(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{12}+1}\Rightarrow1-\dfrac{9}{10^{12}-1}< 1+\dfrac{9}{10^{11}+1}\Rightarrow10A< 10B\)
\(\Rightarrow A< B\)
Vậy A < B
10C=\(\dfrac{10.\left(10^{11}-1\right)}{10^{12}-1}\)=\(\dfrac{10^{12}-10}{10^{12}-1}\)=\(\dfrac{10^{12}-1-9}{1012-1}\)=1-\(\dfrac{9}{10^{12}-1}\)<1 (1)
10D=\(\dfrac{10.\left(10^{10}+1\right)}{10^{11}+1}\)=\(\dfrac{10^{11}+10}{10^{11}+1}\)=\(\dfrac{10^{11}+1+9}{10^{11}+1}\)=1+\(\dfrac{9}{10^{11}+1}\)>1 (2)
(1),(2)=> 1-\(\dfrac{9}{10^{12}-1}\)<1+\(\dfrac{9}{10^{11}+1}\)
hay 10C<10D
=>C<D
Ta có :
\(A=\dfrac{10^{11}-1}{10^{12}-1}< 1\)
\(\Leftrightarrow A< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\dfrac{10^{10}+1}{10^{11}+1}=B\)
Vậy \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{10}+1}{10^{11}+1}\)
Vậy...
Vì \(10^{11}-1< 10^{12}-1\)
\(\Rightarrow\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10^{10}+1}{10^{11}+1}\)