Chứng minh :
a, \(\dfrac{a+b+c}{3}\dfrac{>}{ }\sqrt{\dfrac{ab+bc+ca}{3}}\) với a,b,c>0
b,\(\dfrac{a^2+b^2+c^2}{3}\dfrac{>}{ }\left(\dfrac{a+b+c}{3}\right)^2\)
c,\(\dfrac{x^2+2}{\sqrt{x^2+1}}\dfrac{>}{ }2\)
d,\(\dfrac{a^3+b^3}{2}\dfrac{>}{ }\left(\dfrac{a+b}{2}\right)^3\)
a) Ta có:
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{9}\ge\dfrac{\left(ab+bc+ca\right)}{3}\)
\(\Leftrightarrow\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ca}{3}}\)
Đẳng thức xảy ra khi $a=b=c.$
b) BĐT \(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
Hay là \(2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\),
đúng.
Đẳng thức xảy ra khi $a=b=c.$
c) \(\Leftrightarrow\dfrac{\left(x^2+2\right)^2}{x^2+1}\ge4\Leftrightarrow x^4+4x^2+4\ge4x^2+4\Leftrightarrow x^4\ge0\)
Đẳng thức xảy ra khi $x=0.$
d) Xét hiệu hai vế đi bạn.
Chứng minh:
a, \(a^3+b^3+c^3\dfrac{>}{ }3abc\)
b,\(abc\dfrac{< }{ }\left(\dfrac{a+b+c}{3}\right)^3\)
c,\(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\dfrac{< }{ }a+b+c\)
d,\(\dfrac{a}{b+c}+\dfrac{c}{a+b}+\dfrac{b}{a+c}\dfrac{>}{ }\dfrac{3}{2}\left(a,b,c>0\right)\)