K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2021

\(\dfrac{x^2+1}{x}=\dfrac{x^2}{x}+\dfrac{1}{x}=x+\dfrac{1}{x}\)

Theo bất đẳng thức Cô - si, ta có:

\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}=2\sqrt{1}=2\)

Vậy \(\dfrac{x^2+1}{x}\ge2\)

 

23 tháng 1 2021

1 cách chứng minh khác (chứng minh tương đương)

\(\dfrac{x^2+1}{x}\ge2\\ \Leftrightarrow x^2+1\ge2x\\ \Leftrightarrow x^2-2x+1=\left(x-1\right)^2\ge0\left(\text{luôn đúng}\right)\)

Vậy BĐT ban đầu được chứng minh

NV
23 tháng 1 2021

Biến đổi tương đương:

\(\Leftrightarrow\dfrac{x^2+y^2}{xy}\ge2\)

\(\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã được chứng minh

Cách khác so với anh Nguyễn Việt Lâm

Ta có: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)  (đpcm)

NV
23 tháng 1 2021

BĐT này sai nha bạn.

Nó chỉ đúng khi \(x>0\)

23 tháng 1 2021

Thế bn giải giúp mk ik Nguyễn Việt Lâm Giáo viên

19 tháng 11 2021

\(a,VT=\dfrac{3y\cdot2x}{4\cdot2x}=\dfrac{6xy}{8x}=VP\\ b,VT=\dfrac{\left(x+y\right)\cdot3a\left(x+y\right)}{3a\cdot3a\left(x+y\right)}=\dfrac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}=VP\)

6 tháng 4 2017

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(\Leftrightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)

\(\Leftrightarrow x^2+y^2+z^2+3-2x-2y-2z\ge0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)

Vậy \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

6 tháng 4 2017

cảm ơn bạn nhiều

a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)

b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

10 tháng 11 2019

Giải xàm tí ạ!\(VT-VP=\frac{1}{2}\left[\left(x^2-3x+1\right)^2+\left(y^2-3y+1\right)^2+\left(x-y\right)^2\left(5-x-y\right)\left(x+y-1\right)\right]\ge0\)

=> qed

12 tháng 11 2019

??? KHang ơi! Sai rồi ? Tại sao VT - Vp = 1/2. Dòng thứ 2 ??? 

7 tháng 8 2021

a/ ĐK: $x\ne -5$

$\dfrac{6x^2+30x}{4}=\dfrac{6x(x+5)}{4}=\dfrac{3x(x+5)}{2}$ 

Đề này sai

b/ ĐK: $x\ne \pm 1$

$\dfrac{(x+2)(x+1)}{x^2-1}\\=\dfrac{(x+2)(x+1)}{(x-1)(x+1)}\\=\dfrac{x+2}{x-1}$

$\to$ ĐPCM

Câu a sai đề nhé.