K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trình tự dựng gồm 3 bước:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 40trên đoạn thẳng BC.

- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:

Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H

Gọi giao điểm xy và cung chứa góc là . Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán

Cách dựng:

+ Dựng đoạn thẳng BC = 6cm.

+ Dựng cung chứa góc 40º trên đoạn thẳng BC (tương tự bài 46) :

Dựng tia Bx sao cho Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

Dựng tia By ⊥ Bx.

Dựng đường trung trực của BC cắt By tại O.

Dựng đường tròn (O; OB).

Cung lớn BC chính là cung chứa góc 40º dựng trên đoạn BC.

+ Dựng đường thẳng d song song với BC và cách BC một đoạn 4cm:

Lấy D là trung điểm BC.

Trên đường trung trực của BC lấy D’ sao cho DD’ = 4cm.

Dựng đường thẳng d đi qua D’ và vuông góc với DD’.

+ Đường thẳng d cắt cung lớn BC tại A.

Ta được ΔABC cần dựng.

Chứng minh:

+ Theo cách dựng có BC = 6cm.

+ A ∈ cung chứa góc 40º dựng trên đoạn BC

Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ A ∈ d song song với BC và cách BC 4cm

⇒ AH = DD’ = 4cm.

Vậy ΔABC thỏa mãn yêu cầu đề bài.

Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.

11 tháng 4 2017

Trình tự dựng gồm 3 bước:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 40o trên đoạn thẳng BC.

- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:

Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H

Gọi giao điểm xy và cung chứa góc là , . Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán



11 tháng 4 2017

Trình tự dựng gồm 3 bước:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 40o trên đoạn thẳng BC.

- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:

Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H

Gọi giao điểm xy và cung chứa góc là \(\widehat{A}\) , \(\widehat{A'}\). Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán


21 tháng 10 2017

Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách dựng:

+ Dựng đoạn thẳng BC = 6cm.

+ Dựng cung chứa góc  40 º trên đoạn thẳng BC (tương tự bài 46) :

Dựng tia Bx sao cho Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

Dựng tia By ⊥ Bx.

Dựng đường trung trực của BC cắt By tại O.

Dựng đường tròn (O; OB).

Cung lớn BC chính là cung chứa góc 40º dựng trên đoạn BC.

+ Dựng đường thẳng d song song với BC và cách BC một đoạn 4cm:

Lấy D là trung điểm BC.

Trên đường trung trực của BC lấy D’ sao cho DD’ = 4cm.

Dựng đường thẳng d đi qua D’ và vuông góc với DD’.

+ Đường thẳng d cắt cung lớn BC tại A.

Ta được ΔABC cần dựng.

Chứng minh:

+ Theo cách dựng có BC = 6cm.

+ A ∈ cung chứa góc  40 º dựng trên đoạn BC

Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ A ∈ d song song với BC và cách BC 4cm

⇒ AH = DD’ = 4cm.

Vậy ΔABC thỏa mãn yêu cầu đề bài.

Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.

1 tháng 9 2018

Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách dựng:

+ Dựng đoạn thẳng BC = 6cm.

+ Dựng cung chứa góc 40º trên đoạn thẳng BC (tương tự bài 46) :

Dựng tia Bx sao cho Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

Dựng tia By ⊥ Bx.

Dựng đường trung trực của BC cắt By tại O.

Dựng đường tròn (O; OB).

Cung lớn BC chính là cung chứa góc 40º dựng trên đoạn BC.

+ Dựng đường thẳng d song song với BC và cách BC một đoạn 4cm:

Lấy D là trung điểm BC.

Trên đường trung trực của BC lấy D’ sao cho DD’ = 4cm.

Dựng đường thẳng d đi qua D’ và vuông góc với DD’.

+ Đường thẳng d cắt cung lớn BC tại A.

Ta được ΔABC cần dựng.

Chứng minh:

+ Theo cách dựng có BC = 6cm.

+ A ∈ cung chứa góc 40º dựng trên đoạn BC

Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ A ∈ d song song với BC và cách BC 4cm

⇒ AH = DD’ = 4cm.

Vậy ΔABC thỏa mãn yêu cầu đề bài.

Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.

17 tháng 5 2020

AMAM là đường trung tuyến ứng với cạnh huyền nên AM=BC2=BMAM=BC2=BM

⇒△MAB⇒△MAB cân tại MM

⇒BAMˆ=MBAˆ⇒BAM^=MBA^

Ta có:

BADˆ=DAMˆ−BAMˆ=900−MBAˆ=900−HBAˆBAD^=DAM^−BAM^=900−MBA^=900−HBA^

HABˆ=900−HBAˆHAB^=900−HBA^

⇒BADˆ=HABˆ⇒BAD^=HAB^ nên ABAB là tia phân giác DAHˆDAH^ (đpcm)

b)

Xét tam giác CADCAD và ABDABD có:

DˆD^ chung

ACDˆ=900−ABHˆ=BADˆACD^=900−ABH^=BAD^

⇒△CAD∼△ABD⇒△CAD∼△ABD (g.g)

⇒CAAB=ADBD=CDAD⇒CAAB=ADBD=CDAD

⇒CA2AB2=CDBD(∗)⇒CA2AB2=CDBD(∗)

Dễ thấy △BAH∼△BCA△BAH∼△BCA (g.g) và △CAH∼△CBA△CAH∼△CBA (g.g)

⇒BABC=BHBA⇒BABC=BHBA và CACB=CHCACACB=CHCA

⇒AB2=BC.BH⇒AB2=BC.BH và AC2=CH.BCAC2=CH.BC

⇒AC2AB2=CHBH(∗∗)⇒AC2AB2=CHBH(∗∗)

Từ (∗);(∗∗)⇒CDBD=CHBH(∗);(∗∗)⇒CDBD=CHBH

⇒CD.BH=CH.BD⇒CD.BH=CH.BD (đpcm)

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

25 tháng 4 2017

Hướng dẫn làm bài:

Dựng BC = 4cm và đường thẳng (d) song song với BC và cách BC một khoảng là 1cm

Tâm O của đường tròn nội tiếp ∆ABC là giao điểm của đường thẳng (d) với cung chứa góc 90° + 60° : 2 = 120° dựng trên đoạn BC cố định

Qua B và C vẽ các tiếp tuyến với (O), chúng cắt nhau tại A. Tam giác ABC là tam giác phải dựng


25 tháng 4 2017

Giải bài 14 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Dựng BC = 4cm và đường thẳng (d) song song với BC và cách BC một khoảng là 1 cm.

Tâm O của đường tròn nội tiếp tam giác ABC là giao điểm của đường thẳng (d) với cung chứa góc 90o + 60o : 2 = 120o dựng trên đoạn BC cố định.

Qua B và C vẽ các tiếp tuyến với (O), chúng cắt nhau tại A.

Tam giác ABC là tam giác cần dựng.

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)