A) SO SÁNH \(3\sqrt{3}+2\sqrt{7}\) VÀ \(\sqrt{100}\)
B) SO SÁNH \(\sqrt{24}+\sqrt{26}\)VÀ \(\sqrt{100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:\(\sqrt{17}>\sqrt{16}\)
\(\sqrt{26}>\sqrt{25}\)
\(\implies\) \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)
\(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
Mà \(\sqrt{100}=10\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{100}\)
Mà \(\sqrt{100}>\sqrt{99}\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
b)Ta có:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=100.\frac{1}{\sqrt{100}}\)
\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{10}.100=10\)
\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>10\left(đpcm\right)\)
Hình như bạn hơi nhầm đề bài . Nếu B là 10 thì mình biết .
Nhận thấy : \(\frac{1}{\sqrt{1}}\)>\(\frac{1}{\sqrt{100}}\); \(\frac{1}{\sqrt{2}}\)>\(\frac{1}{\sqrt{100}}\);...: \(\frac{1}{\sqrt{100}}\)=\(\frac{1}{\sqrt{100}}\)
<=> A= \(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)>\(\frac{1}{\sqrt{100}}\)+\(\frac{1}{\sqrt{100}}\)+...+\(\frac{1}{\sqrt{100}}\)( 100 số \(\frac{1}{\sqrt{100}}\))
Hay : A > \(\frac{1}{\sqrt{100}}\).100
<=> A > 10
<=> A>B
Nếu không đúng mong bạn thông cảm nhé !!
a)
Ta có:
\(\left(\sqrt{26}+\sqrt{5}\right)^2=26+2\sqrt{26}\sqrt{5}+5\)
\(=31+2\sqrt{130}\)(1)
Mặt khác: \(\left(\sqrt{7}\right)^2=7\) (2)
Từ (1) và (2) =>\(\sqrt{26}+\sqrt{5}>\sqrt{7}\)
a) \(\sqrt{26}+\sqrt{5}< \sqrt{25}+\sqrt{4}=5+2=7\)
b) \(\sqrt{8}+\sqrt{24}< \sqrt{9}+\sqrt{25}=3+5=8\)
\(\sqrt{65}>\sqrt{64}=8\)
\(\Rightarrow\sqrt{8}+\sqrt{24}< \sqrt{65}\)
\(\left(\sqrt{24}+\sqrt{26}\right)^2=50+8\sqrt{39}\)
\(10^2=100=50+50\)
mà \(8\sqrt{39}< 50\)
nên \(\sqrt{24}+\sqrt{26}< 10\)
>
<
Tik nha bn có cần cách làm ko? Nhân tiện chúc bn năm ms zui zẻ
Bạn hãy so sánh