K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2021

a) = AI2

b) điểm D như hình vẽAD=AI2/AB= constant.

 

6 tháng 2 2021

Ta có PQI = PIA ( cùng chắn PI) nên ΔAPI ~ΔAIQ(g.g)

=> AP/AI = AI/AQ =>Ap.AQ= AI^2 ( không đổi )

Giả sử đt ngoại tiếp tấm giác BPQ cắt AB tại D (D khác B)

Khi đó tam giác ADP ~ tam giác AQB =>AD/AQ = AP/AB

hay AD.AB = AP.AQ=AI^2 ( không đổi) 

Do đó điểm D là điểm cố định (đpcm)

16 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Chứng minh thuận:

Đường tròn (O) cho trước, điểm A cố định nên OA có độ dài không đổi.

ΔOBC cân tại O (vì OB = OC bán kính)

IB = IC (gt) nên OI là đường trung tuyến vừa là đường cao

OI ⊥ BC

Góc OIA = 90 °

Đường thẳng d thay đổi nên B, C thay đổi thì I thay đổi tạo với 2 đầu đoạn OA cố định góc góc OIA =  90 ° . Vậy I chuyển động trên đường tròn đường kính OA.

Chứng minh đảo: Lấy điểm I’ bất kỳ trên đường tròn đường kính AO. Đường thẳng AI’ cắt đường tròn (O) tại 2 điểm B’ và C’.

Ta chứng minh: I’B = I’C’.

Trong đường tròn đường kính AO ta có góc OI'A =  90 °  (góc nội tiếp chắn nửa đường tròn)

OI'⊥ B'C'

I'B' = I'C' (đường kính vuông góc với dây cung)

Vậy quỹ tích các điểm I là trung điểm của dây BC của đường tròn tâm O khi BC quay xung quanh điểm A cố định là đường tròn đường kính AO.

22 tháng 3 2021

Ta có

\(AB=AC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến hai tiếp điểm bằng nhau)

\(\Rightarrow\Delta ABC\) cân tại A (1)

AO là phân giác của \(\widehat{BAC}\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm của đường tròn là phân iacs của góc tạo bởi 2 tiếp tuyến) (2)

Từ (1) và (2) \(\Rightarrow AH\perp BC\) (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao, đường trung trực...)

\(\Rightarrow\widehat{AHE}=90^o\) (*)

Ta có

\(OM=ON\) (Bán kính (O)) \(\Rightarrow\Delta OMN\) cân tại O

Ta có \(IM=IN\) (Giả thiết) => ON là đường trung tuyến của tg OMN

\(\Rightarrow OE\perp AN\) (Trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao, đường trung trực...)

\(\Rightarrow\widehat{AIE}=90^o\) (**)

Từ (*) và (**) => I và H cùng nhìn AE dưới hai góc bằng nhau và bằng 90 độ => I và H nằm trên đường tròn đường kính AE nên 4 điểm A;H;I;E cùng nằm trên 1 đường tròn

11 tháng 3 2022

Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn. Kẻ một đường thẳng đi qua A và không đi qua O, cắt đường tròn tại hai điểm phân biệt MN (M nằm giữa A và N). Từ A vẽ hai tiếp tuyến AB và AC với (O) (BC là hai tiếp điểm). Đường thẳng BC cắt AO tại H. Gọi I là trung điểm của MN. Đường thẳng OI cắt đường thẳng BC tại E. Chứng minh AHIE là tứ giác nội tiếp.

 

 

 theo gt, ta co: 

 là trung điểm của MN