Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<giải tắt>
a/ \(d_2\text{ giao }d_3\text{ tại }A\left(5;14\right)\)
Để d1; d2; d3 đồng quy thì \(A\in d_1\Leftrightarrow14=\left(m+2\right).5+3\Leftrightarrow m=\frac{1}{5}\)
b/ Gọi tọa độ điểm đồng quy là \(M\left(a;2a+4\right)\)(do M thuộc d3)
\(M\in d_1\Rightarrow2a+4=\left(m+2\right)a+3\Leftrightarrow ma=1\)
\(M\in d_4\Rightarrow2a+4=2m.a-2\Rightarrow2a+4=2.1-2\Rightarrow a=-2\)
\(\Rightarrow m=\frac{1}{a}=-\frac{1}{2}\)
Tọa độ giao điểm của d2 và d3 là:
\(\hept{\begin{cases}2x+y=-1\\3x-2y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)
gọi I (0;-1) là tọa độ giao điểm của d2 và d3
để 3 đường thẳng trên đồng quy tại I
\(\Rightarrow2m.0-\left(m+1\right).-1=m-2\)
\(\Leftrightarrow0+m+1=m-2\)
\(\Leftrightarrow0m=-3\)(vô nghiệm)
Vậy 3 đường thẳng trên không đồng quy tại một điểm.
a, để (d2)//(d3)
\(< =>\left\{{}\begin{matrix}m^2+1=2\\m\ne1\end{matrix}\right.\)\(< =>m=-1\)
b, pt hoành độ giao điểm (d1)(d2)
\(x+2=2x+1< =>x=1=>y=3\)
\(pt\) hoành độ (d2)(d3)
\(2x+1=\left(m^2+1\right)x+m< =>2+1=\left(m^2+1\right)2+m\)
\(=>m=0,5\)
a,Giao của d1 và d2 là điểm có hoành độ thỏa mãn pt :
x -1 = - x + 3
x - 1 + x - 3 = 0
2x - 4 = 0
2x = 4
x = 2
thay x = 2 vào pt y = x - 1 => y = 2 - 1 = 1
Giao của d1 và d2 là A ( 2; 1)
b, để d1; d2; d3 đồng quy thì d3 phải đi qua giao điểm của d1 và d2 là điểm A ( 2; 1)
Thay tọa độ điểm A vào pt d3 ta có :
2.(m-2) .2 + (m-1) = 1
4m - 8 + m - 1 = 1
5m - 9 = 1
5m = 10
m = 2
vậy với m = 2 pt d3 là y = 2 -1 = 1 thì d1; d2 ; d3 đồng quy tại 1 điểm
c, vẽ đồ thị hàm số câu này dễ bạn tự làm nhé
Giao d1 với Ox là điểm có tung độ y = 0 => x -1 = 0 => x = 1
Vậy giao d1 với Ox là điểm B( 1;0)
độ dài OB là 1
Giao d1 với trục Oy điểm có hoành độ x = 0 => y = 0 - 1 = -1
Vậy giao d1 với Oy là điểm C ( 0; -1)
Độ dài OC = |-1| = 1
vẽ đồ thị bạn tự vẽ nhé
d, Xét tam giác vuông OBC có
OB = OC = 1 ( cmt)
=> tam giác OBC vuông cân tại O
=> góc OBC = ( 1800 - 900): 2 = 450
Kết luận d1 tạo với trục Ox một góc bằng 450
PT hoành độ giao điểm \(\left(d_1\right)\text{ và }\left(d_2\right)\)
\(x-m+1=2x\\ \Leftrightarrow x=1-m\Leftrightarrow y=2-2m\\ \Leftrightarrow A\left(1-m;2-2m\right)\)
Để 3 đt đồng quy \(\Leftrightarrow A\left(1-m;2-2m\right)\in\left(d_3\right)\)
\(\Leftrightarrow2\left(2m-1\right)\left(1-m\right)+\dfrac{1}{4}=2-2m\\ \Leftrightarrow6m-4m^2-2+\dfrac{1}{4}=2-2m\\ \Leftrightarrow4m^2-8m+\dfrac{15}{4}=0\\ \Leftrightarrow16m^2-32m+15=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5}{4}\\m=\dfrac{3}{4}\end{matrix}\right.\)
Phương trình hoành độ giao điểm \(\left(d_1\right)\) và \(\left(d_2\right)\):
\(-\dfrac{1}{2}x+\dfrac{3}{2}=2x+1\Leftrightarrow x=\dfrac{1}{5}\Rightarrow y=\dfrac{7}{5}\)
\(\Rightarrow A\left(\dfrac{1}{5};\dfrac{7}{5}\right)\) là giao điểm của d1 và d2
Ba đường thẳng đồng quy khi \(\left(\dfrac{1}{5};\dfrac{7}{5}\right)\in\left(d_3\right)\)
\(\Leftrightarrow\dfrac{2m}{5}+\dfrac{7}{5}=m+1\)
\(\Leftrightarrow m=\dfrac{2}{3}\)
Vì \(a.a'=-\dfrac{1}{2}.2=-1\Rightarrow\left(d_1\right)\perp\left(d_2\right)\)
Gọi B, C lần lượt là giao điểm của \(\left(d_1\right);\left(d_2\right)\) với \(\left(d_3\right)\)
\(\Rightarrow\) \(\left(d_3\right)\) cắt \(\left(d_1\right)\) và \(\left(d_2\right)\) tạo thành 1 tam giác vuông tại A
\(\Leftrightarrow\) \(A\notin\left(d_3\right)\) và \(\left(d_3\right)\) không song song với \(\left(d_1\right)\) và \(\left(d_2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{2}{3}\\-\dfrac{1}{2}\ne-2m\\2\ne-2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{2}{3}\\m\ne\dfrac{1}{4}\\m\ne-1\end{matrix}\right.\)