Dạ mọi người giúp em bài này với ạ. Em cảm ơn ạ
cho góc xDy = a. lấy điểm A thuộc tia Dx. Một đường tròn (O) tiếp xúc tia Dx tại A và cắt Dy tại B và C. I là tâm đường tròn nội tiếp tam giác ABC. TÍnh góc IAD theo a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì cát tuyến chung \(BCD\perp AB\)tại B (gt) => \(\widehat{CBA}=\widehat{DBA}=90^o\)=> CA và DA lần lượt là đường kính của đt (O) và (O')
=> A,O,C thẳng hàng và D, O', A thẳng hàng
Xét đt (O) có: \(\widehat{CKA}=\widehat{CKD}=90^o\)(góc nội tiếp chắn nửa đường tròn) \([Do\overline{D,A,K}\left(gt\right)\Rightarrow\widehat{CKA}=\widehat{CKD}]\)
Xét đt (O') có: \(\widehat{AID}=\widehat{CID}=90^o\)(góc nội tiếp chắn nửa đường tròn) \([Do\overline{C,A,I}\left(gt\right)\Rightarrow\widehat{AID}=\widehat{CID}]\)
Xét tứ giác CKID có: \(\widehat{CKD}=\widehat{CID}=90^o\)=> tứ giác CKID nội tiếp một đt (Dhnb)